ПНЖК и их пищевые источники (ч.1)

Apr 16, 2016 13:14




НЕБОЛЬШОЕ ВСТУПЛЕНИЕ ...

И пусть я буду выглядеть обычным копипастером, но я просто не могу себе позволить дробить, урезать, сокращать, упрощать настолько шикарный материал про ПНЖК и рыбный жир. Еще более ценной является эта информация, что она принадлежит перу нашего соотечественника, российского ученого, доктора биологических наук, профессора кафедры водных и наземных экосистем Сибирского федерального университета, заместителя директора по науке Института биофизики СО РАН, заведующего лабораторией экспериментальной гидроэкологии Гладышева Михаила Ивановича, имеющего более 160 опубликованных научных работ (159 журнальных статей (не менее 59 из них можно найти в крупнейшей базе данных медицинских и биологических публикаций PubMed [Gladyshev MI[Author]]), 2 книги, 2 патента).



Команда российских ученых, возглавляемая Михаилом Гладышевым (Михаил Иванович Гладышев, Надежда Николаевна Сущик и Олеся Николаевна Махутова - сотрудники Института биофизики СО РАН, Красноярск), в 2012 году стали лауреатами Международной премии Scopus Award (международная премия организованная в 2004 году крупнейшим мировым издательством научной информации - Издательством «Эльзевир» (Elsevier)) - за выдающийся вклад в науку в области биологии.

В 2012 году, Михаил Гладышев выпустил статью "Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека", которая была опубликована в Журнале Сибирского федерального университета (Journal of Siberian Federal University. Biology 4 (2012 5) 352-386) (оригинал статьи доступен на сайте Журнала СФУ и по ссылке [pdf] )

В статье подробно рассматриваются структура и строение молекул жирных кислот, включая незаменимые полиненасыщенные жирные кислоты (ПНЖК). Описывается роль ПНЖК в организме человека как биохимических предшественников различных эндогормонов. Приводится обзор результатов многолетних клинических и эпидемиологических исследований действия ПНЖК на человека. Рассматривается значение сбалансированного потребления ПНЖК в диете, способствующего профилактике сердечно-сосудистых заболеваний. Обобщаются данные о содержании ПНЖК в рыбе как в основном источнике этих веществ в питании человека. Обсуждается вероятная роль потребления морепродуктов в эволюции человека. Даётся характеристика водных экосистем как основных продуцентов длинноцепочечных ПНЖК в биосфере. Представлены основные способы сохранения высокой продукции ПНЖК в водных экосистемах. Приводятся количественные данные об оптимальных порциях потребляемой рыбы и способах её кулинарной обработки.

Предупреждаю сразу, статья длинная, т.е. будет публиковаться несколькими постами .... ну и как обычно, если у вас аллергия на многобуквенные тексты, то увы вы потеряете многое пройдя мимо ... но каждому свое ... приступим ...

ЧАСТЬ 1 | ЧАСТЬ 2 | ЧАСТЬ 3

Journal of Siberian Federal University. Biology 4 (2012 5) 352-386 | УДК 574.58 +577.1
Незаменимые полиненасыщенные жирные кислоты и их пищевые источники для человека
АВТОР: М.И. Гладышев
Институт биофизики СО РАН, Россия 660036, Красноярск, Академгородок Сибирский федеральный университет, Россия 660041, Красноярск, пр. Свободный, 79 1

Рассматриваются структура и строение молекул жирных кислот, включая незаменимые полиненасыщенные жирные кислоты (ПНЖК). Описывается роль ПНЖК в организме человека как биохимических предшественников различных эндогормонов. Приводится обзор результатов многолетних клинических и эпидемиологических исследований действия ПНЖК на человека. Рассматривается значение сбалансированного потребления ПНЖК в диете, способствующего профилактике сердечно-сосудистых заболеваний. Обобщаются данные о содержании ПНЖК в рыбе как в основном источнике этих веществ в питании человека. Обсуждается вероятная роль потребления морепродуктов в эволюции человека. Даётся характеристика водных экосистем как основных продуцентов длинноцепочечных ПНЖК в биосфере. Представлены основные способы сохранения высокой продукции ПНЖК в водных экосистемах. Приводятся количественные данные об оптимальных порциях потребляемой рыбы и способах её кулинарной обработки.

ВВЕДЕНИЕ

Почти два века назад, когда в рамках физиологии и биохимии зарождалась современная наука о питании, появился афоризм: «You are what you eat» (ты - это то, что ты ешь). Как известно, съедаемые нами органические вещества подразделяются на белки, жиры и углеводы. А ещё, как было установлено сравнительно недавно - чуть больше ста лет тому назад, в пище должны содержаться витамины. Все знают два основных свойства витаминов: 1) их требуется очень мало, если сравнивать, например, с белками; 2) большинство витаминов, как правило, не вырабатываются в организме человека и могут поступать только с особой пищей. Человеческий организм способен к биохимическому превращению поглощенной пищи и синтезу из неё многих необходимых ему для жизнедеятельности веществ. Например, мы превращаем все пищевые белки в аминокислоты, а затем из этих аминокислот строим нужные нам вещества. Кроме белков, мы можем синтезировать и жирные кислоты, но отнюдь не все. Именно поэтому в начале XX века некоторые жиры даже получили название «витамин F» (от английского Fat - жир). Но прежде чем перейти к роли «витамина F» в питании человека, кратко охарактеризуем строение и свойства жирных кислот (ЖК).

Состав и структура жирных кислот



Жиры, или липиды, - это органические вещества, практически нерастворимые в воде, но хорошо растворимые в так называемых неполярных растворителях: ацетоне, спирте, хлороформе. Основную часть липидов составляют жирные кислоты (Lehninger et al., 1993).

Молекулы жирных кислот состоят из углеродной цепи, на одном конце которой находится карбоксильная (кислотная) группа (COOH), а на другом - метильная группа атомов (CH3). Разные ЖК отличаются друг от друга количеством атомов углерода, а также количеством двойных связей между атомами углерода. На рис. 1 представлено схематическое изображение двух ЖК, а на рис. 2 приведены пространственные молекулярные модели четырёх других ЖК. Следует отметить, что чем больше двойных связей в молекуле ЖК, тем сильнее закручивается углеродная цепь, приближаясь по форме к спирали (рис. 2). Пространственная структура молекул ЖК определяет их биохимические свойства, которые будут рассмотрены ниже.



ЖК имеют номенклатурные биохимические названия, но для краткости им присвоены простые и понятные обозначения, основанные на количестве атомов углерода в цепи, а также на количестве и положении двойных связей. Например, на рис. 1 сверху изображена стеариновая (октадекановая) кислота, состоящая из 18 углеродных атомов и не имеющая двойных связей, а снизу - олеиновая (цис-9- октадеценовая), также состоящая из 18 атомов углерода, но имеющая одну двойную связь на девятом атоме углерода, если считать от метильного конца молекулы. Кратко эти ЖК обозначаются как 18:0 и 18:1n-9, т. е. в начале обозначения указывается число атомов углерода (18), затем через двоеточие приводится число двойных связей (0 и 1 соответственно), а потом дан номер углеродного атома, от которого начинается двойная связь (n-9). Если двойных связей в молекуле несколько, то указывается положение первой из них. Ранее номер атома обозначался греческой буквой ю (омега), сейчас чаще используют обозначение латинской буквой n, но омега по традиции также применяется в наименовании ряда кислот, о которых речь пойдёт ниже.

ЖК, не имеющие двойных связей, называются насыщенными (стеариновая кислота 18:0 на рис. 1). ЖК с двойными связями именуются ненасыщенными (олеиновая кислота 18:1n-9 на рис. 1). Ненасыщенные кислоты, содержащие две и более двойных связи, получили специальное наименование - полиненасы- щенные жирные кислоты (ПНЖК). Именно о свойствах и физиолого-биохимической роли некоторых ПНЖК и пойдёт речь в нашей статье.

Незаменимые ПНЖК

Двойные связи в молекулу ЖК вставляют специальные ферменты - десатуразы (от англ. desaturation - уменьшение насыщенности). Каждая десатураза, представляющая собой сложную белковую молекулу, вставляет двойную связь лишь в один строго определённый участок углеродной цепи ЖК. Например, десатураза Д9 (обозначаемая прописной греческой буквой «дельта»), присоединяет двойную связь к девятому атому углерода, считаемому от карбонильного (COOH), а не от метильного конца молекулы (рис. 1). Наличие или отсутствие у разных видов организмов тех или иных десатураз определяется генотипом. Например, высшие растения и водоросли имеют гены, кодирующие десатуразы Д15 и Д12, т. е. они способны синтезировать ЖК с двойными связями в положении n-6 и n-3 (Heinz, 1993; Cohen et al., 1995; Harwood, 1996; Tocher et al., 1998). Напротив, подавляющее число видов беспозвоночных животных и все позвоночные, включая человека, этих генов не имеют и при синтезе ЖК не могут присоединять двойную связь к третьему и шестому атомам от метильного конца молекулы (Bell, Tocher, 2009; Lands, 2009).

ПНЖК, необходимые животным (и человеку), но не синтезируемые в их организмах, называют незаменимыми. К незаменимым ПНЖК относятся 18-атомные кислоты семейств n-6 и n-3 (по старому, омега-6 и омега-3): линолевая кислота с двумя двойными связями (18:2n-6) и альфа-линоленовая кислота с тремя двойными связями (18:3n-3). Линолевая и альфа-линоленовая кислоты часто обозначаются аббревиатурами ЛК и АЛК соответственно. Пространственные модели ЛК и АЛК приведены на рис. 2. Животные и человек могут получать эти незаменимые ПНЖК только с пищей.

Согласно современным данным ЛК и АЛК сами по себе не играют особой роли в организме человека. 50-70 % ЛК и АЛК, поступивших с пищей, «сжигаются» для обеспечения энергетических потребностей организма в первые сутки после потребления (Broadhurst et al., 2002). Некоторые исследователи полагают, что ЛК и АЛК накапливаются в коже и содействуют её нормальному функционированию, в первую очередь предотвращают излишнюю потерю воды, а также усиливают шелушение для снижения избыточной пигментации под действием ультрафиолетового излучения (Sinclair et al., 2002).

Основная роль ЛК и АЛК в организме животных и человека состоит в том, что они могут являться биохимическими предшественниками физиологически значимых длинноцепочечных ПНЖК с 20-22 атомами углерода. Длинноцепочечные ПНЖК, называемые частично незаменимыми, - это арахи- доновая (эйкозатетраеновая) кислота (20:4n-6, АРК), эйкозапентаеновая кислота (20:5n-3, ЭПК) и докозагексаеновая кислота (22:6n-3, ДГК). Как это видно из условных обозначений, АРК относится к семейству омега-6, а ЭПК и ДГК - к семейству омега-3. Пространственные модели этих кислот приведены на рис. 2.

Как уже отмечалось, только растения имеют десатуразы Д15 и Д12 и могут синтезировать исходные ПНЖК семейства омега-6 и омега 3, т. е. линолевую и альфа-линоленовую кислоты (рис. 3). Животные, получив ЛК и АЛК с пищей, способны синтезировать из них длинноцепочечные ПНЖК омега-6 (АРК) и омега-3 (ЭПК, ДГК) (Stark et al., 2008). В синтезе участвуют ферменты, удлиняющие углеродную цепь (элонгазы), а также десату- разы Д5 и Д6 (рис. 3). Для синтеза ДГК нужен ряд дополнительных ферментов, но для простоты они не показаны на рис. 3. Однако эффективность синтеза длинноцепочечных ПНЖК у животных и человека невелика, хотя именно эти кислоты играют важнейшую роль в функционировании организма.

Роль длинноцепочечных ПНЖК в организме человека



Наряду с другими жирными кислотами АРК, ЭПК и ДГК входят в состав фосфолипидов клеточных мембран (Lehninger et al., 1993). Фосфолипиды обычно состоят из гидрофильной (водорастворимой) «головки» - фосфатидной кислоты и двух гидрофобных (нерастворимых в воде) «хвостов» - жирных кислот (рис. 4). Первый «хвост» присоединяется к молекуле фосфатидной кислоты в положении, обозначаемом как sn-1, и чаще всего представлен насыщенной ЖК, например стеариновой (18:0). Второй «хвост», занимающий положение sn-2, - это ненасыщенная ЖК (рис. 4). Клеточная мембрана представляет собой двойной слой (бислой) фосфолипидов со встроенными в него различными белками (рис. 5). Клеточная мембрана является основным структурно-функциональным компонентом живой клетки, и большинство процессов превращения вещества и энергии происходят именно на клеточных мембранах.

Жирнокислотный состав фосфолипидов клеток разных органов и тканей существенно различается (рис. 6). Как правило, чем сложнее функция органа, тем больше длинноцепочечных ПНЖК содержится в клетках тканей, составляющих данный орган. Например, в клетках серого вещества коры головного мозга здорового человека содержится 13 % ДГК и 9 % АРК, а содержание ДГК в сетчатке достигает 20 %, это наивысшее значение для человеческого тела (рис. 6). В то же время в адипозной (жировой) ткани, которая состоит не из фосфолипидов, а из запасных жиров - триглицеринов, содержится менее 1 % ДГК (рис. 6).







Таким образом, ДГК является основной полиненасыщенной жирной кислотой в клеточных мембранах сетчатки глаза (в фоторецепторах), а также в нервных клетках. Считается, что благодаря своей длинной цепи (22 атома) и шести двойным связям ДГК имеет уникальную стереохимическую пространственную структуру: она почти закручена в спираль (рис. 2), и именно эта молекула в составе специализированных клеточных мембран обеспечивает наиболее эффективное восприятие светового сигнала и проведение нервного импульса (SanGiovanni, Chew, 2005).

Важнейшая физиолого-биохимическая роль двух других длинноцепочечных ПНЖК, АРК и ЭПК, состоит в том, что они биохимические предшественники синтеза эндогормонов - эйкозаноидов (SanGiovanni, Chew, 2005). Синтез эндогормонов (рис. 7) начинается с высвобождения ПНЖК из фосфолипидов клеточных мембран под действием особого фермента - фосфолипазы А2 (обозначаемой латинскими буквами PLA2). Эта фосфолипаза A2 способна отщеплять именно ПНЖК, находящуюся в молекуле фосфолипида в положении sn-2 (рис. 4). Затем другие ферменты, циклооксигеназы (COX), синтезируют из свободных ПНЖК простагландины (PG) и тромбоксаны (TX), а липоксигеназы (LOX) синтезируют лейкотриены (LT) (рис. 7). Важно отметить, что из арахидоновой кислоты синтезируются в основном простагландины и тромбоксаны так называемой второй серии, т.е. имеющие две двойные связи и обозначаемые PG-2 и TX-2 соответственно, а также лейкотриены четвёртой серии LT-4. TX-2 вызывают сужение кровеносных сосудов, усиливают агрегацию (слипание) тромбоцитов. Чрезмерная агрегация тромбоцитов приводит к повышению артериального давления, образованию тромбов и закупорке сосудов (рис. 7). PG-2 запускают воспалительный процесс и индуцируют боль. LT-4 вызывают спазмы бронхов и секрецию слизи (рис. 7). Из эйкозапентаеновой кислоты получаются эндогормоны, обладающие противоположными свойствами, чем производные АРК (Simopoulos, 2000). Из ЭПК синтезируются простагландины и тромбоксаны третьей серии (с тремя двойными связями), PG-3 и TX-3, и лейкотриены пятой серии LT-5 (рис. 7). TX-3 вызывают расширение кровеносных сосудов, препятствуют слипанию тромбоцитов и тем самым снижают артериальное давление. PG-3 обладают противовоспалительным эффектом (Wall et al., 2010), а LT-5 являются антиаллергенами и расширяют бронхи (рис. 7).



Следует подчеркнуть, что синтез из АРК и ЭПК эндогормонов, обладающих противоположным действием на организм, обеспечивается одними и теми же ферментами: фос- фолипазой A2 и циклооксигеназами (рис. 7). Таким образом, если в фосфолипидах клеток животных и человека имеется избыток АРК, то ферменты быстро превращают их в проста- гландины, тромбоксаны и лейкотриены PG- 2, TX-2 и LT-4, избыточный синтез которых приводит к опасным заболеваниям, прежде всего сердечно-сосудистым, к воспалению, отекам, аллергии и боли. Конечно, против этих болезней и симптомов имеется целый ряд лекарств. Например, всем известный аспирин блокирует циклооксигеназу (рис. 7). Но всех перечисленных выше неприятностей можно избежать, если в фосфолипидах содержится достаточное количество ЭПК, которая конкурирует с АРК за ферменты PLA2 и COX/ LOX (рис. 7). Фосфолипаза и циклооксиге- назы, «отвоёванные» у АРК, производят из ЭПК благоприятные для здорового организма эндогормоны PG-3, TX-3 и LT-5 (рис. 7). Следовательно, чтобы боль и воспаление не умерщвляли, а излечивали, необходим определённый баланс эндогормонов - производных АРК и ЭПК в организме.

Необходимо добавить, что ДГК под действием фосфолипазы и циклооксигеназы может также превращаться в эндогормон - до- козаноид, называемый нейропротектином D (Bazan, 2009). Уже из названия этого эндогормона ясна его функция: защита нервных клеток от повреждения, например от окислительного стресса.

Перечисленные выше биохимические механизмы действия каждой отдельной ПНЖК в организме человека были открыты сравнительно недавно: менее 40 лет назад (Plourde, Cunnane, 2007). А 70 лет назад, когда было эмпирически установлено, что нормальный рост и развитие животных невозможны без жирных кислот омега-6 и омега-3, все эти кислоты обозначали как «витамин F», поскольку особая роль каждой из них не была известна. Да и надёжные методы, позволяющие идентифицировать ПНЖК в биологических объектах, т.е. отличать одну кислоту от другой в их смеси, получили широкое распространение ещё позднее - в середине 90-х годов прошлого века, т.е. менее 20 лет назад. Таким методом является современная хроматомасс- спектрометрия с использованием капиллярных колонок.

Медицинские исследования ПНЖК

После расшифровки механизмов действия ПНЖК в организме начался период их массовых клинических и эпидемиологических исследований. В первую очередь изучали связь между содержанием ПНЖК в плазме крови и наличием сердечно-сосудистых заболеваний. Во второй половине XX века смертность от сердечно-сосудистых заболеваний в индустриально развитых западных странах начала угрожающе расти и вышла на первое место среди смертности от всех остальных заболеваний. Например, в России в 1995-2009 годах ежегодно от болезней системы кровообращения умирали около 1 млн 200 тыс. чел. тогда как от внешних причин (убийства, самоубийства, отравление алкоголем, транспортные происшествия и т.д.) - около 300 тыс. чел., и от раковых заболеваний - также около 300 тыс. чел. (Попов, 2012). Таким образом, смертность от сердечно-сосудистых заболеваний в России составляла в последние два десятилетия более 55 % от всей смертности (Попов, 2012). К сожалению, по этому печальному показателю наша страна занимает первое место в мире. Сердечно-сосудистые заболевания уже давно связывают с содержанием липидов в крови. Если ранее медики обращали внимание на содержание «витамина F» - общей суммы ПНЖК (ЛК, АЛК, АРК и др.), то в последние десятилетия, в связи с обнаружением различий в физиологобиохимических функциях омега-6 и омега-3 кислот, исследовалась специфическая роль каждой из этих групп.

Ещё в середине 1970-х годов было обнаружено, что в плазме крови у гренландских эскимосов, среди которых сердечно-сосудистые заболевания почти отсутствуют, содержится значительно меньше омега-6 кислот (ЛК, АРК) и значительно больше омега-3 ПНЖК (ЭПК, ДГК), чем у населения стран Западной Европы (Wall et al., 2010). А вот содержание холестерина, ранее считавшегося главным фактором риска, в крови у эскимосов и европейцев было практически одинаковым. Дальнейшие клинические и эпидемиологические (популяционные) исследования в основном проводили в североамериканских и западноевропейских странах на очень больших группах пациентов, некоторые включали более десяти тысяч человек. Эти исследования доказали, что повышенное потребление омега-3 ПНЖК достоверно (почти в 10 раз!) снижает риск сердечно-сосудистых заболеваний у здоровых людей, способствует выздоровлению и на 35 % снижает смертность среди людей, перенесших эти заболевания (Harris et al., 2009). Очевидно, механизм благоприятного влияния ЭПК на функционирование кровеносной системы заключается в повышении синтеза эйкозаноидов, расширяющих сосуды, снижающих тромбообразование, артериальное давление и воспаление (Plourde, Cunnane, 2007; Phang et al., 2011). Полезное воздействие ДГК, вероятно, состоит в обеспечении эффективного проведения сигналов в нервных клетках, препятствующих аритмии и спазмам сердца и сосудов (Plourde, Cunnane, 2007; Phang et al., 2011). Высокий уровень ДГК в мембранах митохондрий (клеточных «генераторов энергии») сердечной мышцы повышает эффективность производства и использования энергии сердцем (SanGiovanni, Chew, 2005). Хотя не ясно, какой из этих механизмов является ведущим, необходимость длинноцепочечных омега-3 ПНЖК, ЭПК и ДГК для поддержания здоровья сердечно-сосудистой системы - доказанный медицинский факт (Plourde, Cunnane, 2007). В настоящее время для определения риска сердечно-сосудистых заболеваний предложен омега-3 индекс, представляющий собой процент ЭПК+ДГК от суммы ЖК в клетках красной крови (эритроцитах). У пациентов с омега-3 индексом <4 % риск этих заболеваний в 10 раз выше, чем у пациентов с индексом >8 % (Saldanha et al., 2009).



Cбалансированная диета как способ профилактики сердечно-сосудистых заболеваний

Итак, из современных биохимических данных следует, что в организме человека, во-первых, должно содержаться достаточное количество омега-3 ПНЖК. Во-вторых, соотношение омега-6 и омега-3 кислот тоже имеет важнейшее значение для кровеносной системы. Эти показатели тесно связаны со смертностью от сердечно-сосудистых заболеваний. Например, у населения США и Европы в клетках крови (тромбоцитах) содержание арахидоновой n-6 кислоты почти в три раза выше, а содержание n-3 эйкозапентаено- вой кислоты в 16 раз ниже, чем у эскимосов Гренландии (рис. 9). Соотношение n-6:n-3 у населения этих стран различается в 50 раз, и смертность от сердечно-сосудистых заболеваний в США и Европе почти в 7 раз выше, чем в Гренландии (рис. 9). Население Японии, занимающее по показателям количества и соотношения n-6 и n-3 ПНЖК в крови промежуточное положение, имеет и промежуточное значение смертности от сердечно-сосудистых заболеваний: около 12 % от общей смертности по сравнению с 45 % в США и 7 % в Гренландии (рис. 9).

Уровень различных ПНЖК в крови и других тканях и органах человека напрямую зависит от его пищи. На основании многолетних клинических исследований и эпидемиологических наблюдений, охвативших несколько сотен тысяч человек, Всемирная организация здравоохранения и ряд национальных медицинских организаций рекомендовали для предотвращения сердечно-сосудистых заболеваний ежедневное потребление 5001000 мг ЭПК+ДГК на человека (Kris-Etherton et al., 2002, 2009; Reis, Hibbeln, 2006; Harris et al., 2009). При этом соотношение потребляемых n-6 и n-3 ПНЖК, согласно рекомендациям Национального института здоровья США и японских национальных фондов, должно быть не ыше 2:1-3:1 (Davis, Kris-Etherton, 2003).

Однако проблема состоит в том, что в современных обществах так называемого западного типа, т.е. в большинстве индустриально развитых стран, соотношение n-6:n-3 в продуктах питания составляет в настоящее время 15:1 - 25:1 (Simopoulos, 2000; Wall et al., 2010). Этот показатель начал существенно увеличиваться со второй половины XX века в связи с модернизацией сельского хозяйства и преобладанием мясной продукции, выращиваемой на кормах, богатых зерном с высоким содержанием омега-6 ПНЖК (Simopoulos, 2000). Тенденция увеличения n-6:n-3 в продуктах питания продолжается до сих пор. Например, в Европе потребление n-6 линолевой кислоты за последние двадцать лет возросло на 50 % (Wall et al., 2010). Одновременно с ростом соотношения n-6:n-3 в пище наблюдается рост сердечнососудистых заболеваний. Хотя понятно, что увеличение соотношения n-6:n-3 в пище не единственный фактор, вызывающий болезни органов кровообращения, в настоящее время имеются все основания полагать, что его роль достаточно велика.



Виды продуктов с высоким уровнем тех или иных ПНЖК перечислены в табл. 1. Как следует из приведённых данных, в подсолнечном масле почти нет альфа-линоленовой кислоты и для него характерно очень высокое соотношение n-6:n-3 кислот. В оливковом масле данное соотношение диетически более благо - приятно, но это масло вытесняется с рынка более дешёвым подсолнечным, и в последнее десятилетие даже в таких средиземноморских странах, как Испания и Португалия, подсолнечного масла производится больше, чем оливкового (Sanders, 2000). Неблагоприятно высокие соотношения n-6:n-3 имеются в пшенице, а также в курином мясе и куриных яйцах, если этих птиц кормят зерном (табл. 1). В мясе, особенно в баранине и говядине, соотношение омега-6 и омега-3 кислот фактически идеально, и даже в свинине оно относительно невелико. Однако если мясо пожарить на подсолнечном масле, то n-6:n-3 резко увеличится до 20, как, например, в популярном в западных странах гамбургере (табл. 1). Поскольку АЛК - основная жирная кислота фотосинтезирующих мембран хлоропластов, её особенно много в зелёных листьях и других органах растений: в капусте, в салате и др. Различные рыбы также богаты омега-3 кислотами, особенно длинноцепочечными, ЭПК и ДГК (табл. 1). Таким образом, для достижения благоприятного соотношения n-6:n-3 в пище, снижающего риск сердечно-сосудистых заболеваний, необходимо употреблять больше зелёных растений и рыбы. Мясо животных само по себе не является «опасным» продуктом, но на соотношение в нём омега-6 и омега-3 ПНЖК влияет способ кулинарной обработки (табл. 1).

Рыба - основной источник длинноцепочечных ПНЖК для человека

Как отмечалось выше, 18-атомная АЛК, чрезвычайно важная для растений, в организме животных не играет самостоятельной роли, но является предшественником для синтеза физиологически значимых длинноцепочечных кислот, ЭПК и ДГК (рис. 3). Если у травоядных животных потребности в ЭПК и ДГК, вероятно, могут практически полно - стью обеспечиваться их синтезом из альфа- линоленовой кислоты поедаемых зелёных растений, то для большинства всеядных и хищников, включая человека, по современным данным, необходимо прямое потребление длинноцепочечных ПНЖК. У большинства людей со среднестатистическим генотипом способность к синтезу ЭПК и ДГК из АЛК весьма невелика и не обеспечивает физиологических потребностей организма. Более 60 % АЛК, поступившей с пищей, в первые же 8 часов «сжигаются» в митохондриях в процессе бета-окисления, т.е. тратятся на производство энергии (Plourde, Cunnane, 2007). Для сравнения: менее 5 % потреблённой ДГК идёт на бета-окисление, тогда как оставшаяся основная часть встраивается в клеточные мембраны. Согласно современным данным в среднем лишь около 10 % пищевой АЛК может быть конвертировано в ЭПК и лишь около 5 % - в ДГК (Davis, Kris-Etherton, 2003; Wall et al., 2010). Понятно, что увеличение АЛК в пище не всегда сопровождается увеличением её производных - ЭПК и ДГК в крови. Вероятно, именно поэтому потребление с пищей повышенных количеств АЛК не всегда даёт отчётливый клинический эффект. А вот прямое потребление этих физиологически важных длинноцепочечных ПНЖК вызывает пропорциональное увеличение их концентрации в тканях организма человека (Hibbeln et al., 2006). Как уже говорилось, достоверно доказано, что употребление оптимальной дозы - около 1 г ЭПК+ДГК в сутки - способствует существенному улучшению работы органов кровообращения и нервной системы и в значительной степени помогает предотвратить соответствующие заболевания.

Таким образом, большинству людей для борьбы с истинной чумой XXI века - сердечно-сосудистыми заболеваниями - следует употреблять рекомендованные современной наукой дозы ЭПК+ДГК. Конечно, есть относительно небольшие группы людей, например вегетарианцы, которые могут обходиться без пищевых длинноцепочечных ПНЖК. Уровень ЭПК и ДГК в крови вегетарианцев на 20-30 % ниже, чем у «всеядных» людей, однако у них нет явно выраженных клинических симптомов недостатка ПНЖК (Davis, Kris-Etherton, 2003). Причины подобных особенностей организма до концы не ясны, однако в целом понятно, что в тканях таких людей ЭПК и ДГК должны более эффективно синтезироваться из растительной АЛК и экономнее расходоваться (Plourde, Cunnane, 2007). Ничего удивительного в этом нет, поскольку отличия в работе ферментных систем - в данном случае Д5 и Д6 десатураз - у людей с разным генотипом хорошо известны. К тому же вегетарианцы употребляют с растительной пищей сравнительно большое количество АЛК - исходной кислоты для последующего синтеза длинноцепочечных ПНЖК омега-3 - и не получают с мясом готовой омега-6 АРК, конкурирующей с ЭПК за фосфолипазу А2 при синтезе эндогормонов (рис. 7). Вероятно, этот генетически обусловленный способ регуляции и обеспечивает нормальное функционирование организма.

Итак, для основной массы людей со среднестатистическим генотипом необходимо регулярное употребление значительных количеств ЭПК и ДГК. Из табл. 1 видно, что основным продуктом, содержащим высокие концентрации этих длинноцепочечных омега-3 ПНЖК, является рыба. Почему именно рыба и другие морепродукты - крабы, моллюски, креветки - так богаты ЭПК и ДГК? Наземные высшие (цветковые) растения останавливают свой синтез на 18-атомной альфа-линоленовой кислоте (рис. 3) и не синтезируют длинноцепочечные омега-3 ПНЖК (Heinz, 1993; Tocher et al., 1998). Как отмечалось выше, большинство животных обладают слабой способностью конвертировать АЛК в ЭПК и ДГК. Из всех известных организмов лишь некоторые микроводоросли (диатомеи, перидинеи, криптофиты) способны эффективно синтезировать и накапливать в своей биомассе большие количества ЭПК и ДГК. То есть водные экосистемы - озёра, реки и моря - являются основными месторождениями длинноцепочечных омега-3 ПНЖК (Gladyshev et al., 2009a). ЭПК и ДГК, синтезированные микроводорослями, по трофической (пищевой) цепи передаются к водным беспозвоночным, от них - к рыбам и затем - к человеку и другим наземным животным (рис. 10).

Вероятная роль потребления рыбы в эволюции человека

Не исключено, что поток ПНЖК из водных экосистем в наземные стал важнейшим фактором в эволюции человека. Как отмечалось выше, ДГК является основной жирной кислотой в мембранах клеток серого вещества коры головного мозга человека. Человек отличается от всех остальных животных именно размером и массой головного мозга. Связь размеров мозга в сравнении с размерами тела описывается так называемым коэффициентом энцефализации (от греч. en cephalos - головной мозг, «находящийся внутри головы») - это отклонение истинных размеров мозга от соотношения, рассчитанного по «стандартному» виду млекопитающих (Roth, Dicke, 2005). Как видно из рис. 11, коэффициент энцефализации у современного Homo sapiens намного выше, чем у австралопитека и человекообразных обезьян, не говоря уж о других млекопитающих. Сухое вещество мозга на 60 % состоит из липидов (Broadhurst et al., 2002), из этих липидов 35 % составляют жирные кислоты (Lauritzen et al., 2001), среди которых наибольшая доля (до 20 %) принадлежит ДГК (McNamara, Carlson, 2006). При этом важно отметить, что содержание ДГК в мозге всех млекопитающих является почти одинаковым (Broadhurst et al., 2002).




Поскольку в самом мозге ДГК почти не синтезируется, высокий коэффициент энцефализации означает, что организм человека должен снабжать свой мозг ДГК гораздо интенсивнее, чем организм всех остальных видов животных.

В период интенсивного формирования мозга во время внутриутробного развития человеческий плод получает ДГК из организма матери. При этом плацента избирательно поглощает материнскую ДГК и передаёт эту ПНЖК плоду. Например, скорость переноса ДГК через плаценту в три раза выше, чем АРК (Lauritzen et al., 2001). В связи с интенсивным и избирательным переносом через плаценту содержание ДГК в плазме крови матери снижается в два раза (Broadhurst et al., 2002). Схожее явление обнаружено нами у рыб: во время вынашивания икры, имеющей чрезвычайно высокий уровень накопления ДГК, содержание данной кислоты в мышцах рыбы уменьшалось почти в два раза (Sushchik et al., 2007). В период грудного вскармливания ребёнка запасы ДГК в организме матери также продолжают истощаться, поскольку эта ПНЖК поступает в грудное молоко (Lauritzen et al., 2001). ДГК из крови избирательно поглощается именно клетками мозга, а также нервной системы и органов зрения (Bazan, . Клетки этих органов способны чрезвычайно долгое время удерживать «захваченную» ДГК, обеспечивая её постоянную концентрацию. Например, чтобы добиться снижения содержания ДГК в мозге и сетчатке у грызунов, необходимо держать на диете без ДГК два их поколения (Bazan, 2009). Считается, что столь же эффективная консервация ДГК характерна и для мозга человека (Lauritzen et al., 2001). Однако, по некоторым оценкам, в мозге человека в результате метаболизма ежесуточно расходуется 2-8 % ДГК, и эти потери должны восполняться организмом (McNamara, Carlson, 2006).

Недостаток ДГК в диете матери и ребёнка приводит к снижению способностей к обучению, зрительной активности, психомоторных функций детей (McNamara, Carlson, 2006; Reis, Hibbeln, 2006). Дефицит ДГК у взрослых вызывает повышенный риск депрессии, шизофрении, агрессии, слабоумия и прочих нервных расстройств, включая болезнь Альцгеймера (Davis, Kris-Etherton, 2003; Hibbeln et al., 2006; Robert, 2006; Plourde, Cunnane, 2007; Saldanha et al., 2009). Для профилактики нервных расстройств и психических заболеваний Американская психиатрическая ассоциация рекомендует ежедневное потребление не менее 1 г омега-3 ПНЖК (Reis, Hibbeln, 2006). Следует отметить, что, хотя объём данных клинических и эпидемиологических исследований о пользе ЭПК+ДГК для предотвращения и лечения нервных и психических заболеваний постоянно растёт, рекомендуемые дозы потребления ПНЖК остаются такими же, как и рекомендуемые для профилактики сердечно-сосудистых заболеваний (Harris et al., 2009). Необходимо также подчеркнуть, что в настоящее время нет средств для лечения одного из самых опасных и распространённых нервных заболеваний - болезни Альцгеймера (Harris et al., 2009; Wall et al., , однако появляются обнадёживающие данные, свидетельствующие о возможности снизить риск этого заболевания, употребляя ДГК (Wall et al., 2010).

продолжение следует ....

#наука, #основаоснов, #это интересно, #омега3, #перепост, #рыбный жир, #brain inside, #dha/epa, #здоровье

Previous post Next post
Up