Часть 1,
Часть 2.
Поскольку попытки Брауэра, Гильберта и всех остальных решить сложную задачу Платона, видимо, потерпели неудачу, стоит снова взглянуть на мнимое ниспровержение Платоном идеи о том, что математическую истину можно получить с помощью научных методов.
Прежде всего, Платон говорит нам, что, поскольку мы имеем доступ только (скажем) к несовершенным кругам, значит, через них мы не сможем получить знание о совершенных кругах. А почему нет? Точно так же можно было бы сказать, что мы не можем открыть законы движения планет, потому что у нас нет доступа к реальным планетам, а есть доступ только к их изображениям. Также можно было бы сказать, что невозможно построить точные станки, потому что первый такой станок пришлось бы строить с помощью неточных станков. Оглянувшись назад, можно увидеть, что такая критика вызвана очень грубым изображением принципа действия науки (подобным индуктивизму), который вряд ли можно считать удивительным, поскольку Платон жил до того, что мы могли бы признать как науку. Если, скажем, единственный способ узнать что-либо о кругах из опыта заключается в том, чтобы исследовать тысячи физических кругов, а потом, из собранных данных, попытаться сделать какой-то вывод об их абстрактных евклидовых двойниках, то Платон уловил суть. Но если мы создадим гипотезу, что реальные круги точно определенным образом похожи на абстрактные, и окажемся правы, то мы определенно можем узнать что-либо об абстрактных кругах, глядя на реальные. В геометрии Евклида часто используют рисунки для точного определения геометрической задачи или ее решения. В таком методе описания существует возможность ошибки, если несовершенство кругов на рисунке оставит впечатление, вводящее в заблуждение, - например, если кажется, что два круга касаются друг друга, хотя на самом деле этого не происходит. Но, поняв отношение между реальными и совершенными кругами, можно аккуратно исключить все подобные ошибки. А не понимая этого отношения, практически невозможно понять геометрию Евклида.
Надежность знания о совершенном круге, которое можно получить из изображения круга, полностью зависит от точности гипотезы о том, что эти круги похожи должным образом. Такая гипотеза в отношении физического объекта (рисунка) эквивалентна физической теории, и ее невозможно знать определенно. Но этот факт (как утверждал Платон) не мешает изучению совершенных кругов из опыта; он делает невозможной определенность. Он не должен расстраивать никого, кто ищет не определенность, а объяснения.
Геометрию Евклида можно абстрактно сформулировать без рисунков. Но использование цифр, букв и математических символов в символическом доказательстве способно породить ничуть не большую определенность, чем рисунок по той же самой причине. Символы - это тоже физические объекты, - скажем, чернильные пятна на бумаге, - которые обозначают абстрактные объекты. И опять мы полностью полагаемся на гипотезу, что физическое поведение символов соответствует поведению обозначаемых ими абстракций. Следовательно, надежность того, что мы узнаем, манипулируя этими символами, полностью зависит от точности наших теорий об их физическом поведении и о поведении наших рук, глаз и т.д., с помощью которых мы манипулируем этими символами и наблюдаем за ними. Обманчивые чернила, из-за которых случайный символ изменил свой внешний вид, когда мы не видели этого, - возможно, под дистанционным управлением какого-то шутника, обладающего практической реализацией высоких технологий, - вскоре введут нас в заблуждение относительно того, что мы "определенно" знаем.
Теперь давайте повторно исследуем еще одно допущение Платона: допущение о том, что у нас нет доступа к совершенству физического мира.
Возможно, он прав в том, что мы не найдем совершенной чести или справедливости, и он конечно прав в том, что мы не найдем законы физики или множество всех натуральных чисел. Но мы можем найти совершенный ход в некой данной шахматной позиции. Это все равно, что сказать, что мы можем найти физические объекты или процессы, которые полностью обладают свойствами точно определенных абстракций.
Поскольку все это имеет место, совершенный евклидов круг можно сделать доступным для наших чувств. Платон не осознавал этого, потому что он не знал о существовании виртуальной реальности. Не составит особого труда запрограммировать в генераторы виртуальной реальности правила геометрии Евклида, так что пользователь сможет получить впечатление взаимодействия с совершенным кругом. Не имея толщины, круг был бы невидимым, пока мы также не модифицировали бы законы оптики, для этого мы могли бы освещать его, чтобы пользователь знал, где он находится. (Пуристы, возможно, предпочли бы обойтись без этого декорирования). Мы могли бы сделать этот круг твердым и непроницаемым, и пользователь мог бы проверить его свойства с помощью твердых, непроницаемых инструментов, а также средств измерения. Виртуальные штангенциркули имели бы совершенную кромку толщиной с лезвие ножа, так что они могли бы точно измерить нулевую толщину. Пользователю можно было бы позволить "нарисовать" еще круги или другие геометрические фигуры в соответствии с правилами геометрии Евклида. Размеры инструментов и самого пользователя можно было бы регулировать по желанию, чтобы обеспечить проверку предсказаний геометрических теорем в любом масштабе, сколь угодно малом. В каждом случае переданный круг мог бы реагировать точно так же, как круг, определенный в аксиомах Евклида. Таким образом, на основе современной науки мы должны сделать вывод, что в этом отношении Платон мыслил наоборот. Мы можем воспринять совершенные круги в физической реальности (т.е. в виртуальной реальности); но мы никогда не воспримем их в области Форм, поскольку, если и можно сказать, что такая область существует, мы никак ее не воспринимаем.
Идея Платона о том, что физическая реальность состоит из несовершенных копий абстракций, сегодня случайно кажется чрезмерно асимметричной позицией. Как и Платон, мы все еще изучаем абстракции ради их самих. Однако в науке после Галилео и в теории виртуальной реальности мы также рассматриваем абстракции как средство понимания реальных или искусственных физических категорий, и в этом контексте мы считаем само собой разумеющимся, что абстракции почти всегда являются приближениями истинной физической ситуации. Таким образом, несмотря на то, что Платон считал земные круги, нарисованные на песке, приближениями истинных математических кругов, современный физик посчитал бы математический круг плохим приближением истинной формы планетарных орбит, атомов и других физических объектов.
Представляя круги, мы осуществляем передачу в виртуальной реальности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет. Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не перекрывая друг друга. Это впечатление при подобных обстоятельствах было бы эквивалентно точному доказательству возможности такой ситуации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид "практического" взаимодействия с совершенными формами не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической форме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной реальности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.
Как же мы можем ее проверить? Мы доказываем ее. Традиционно доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физически эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Например, когда при надлежащих обстоятельствах мы наблюдаем символы "ΔАВС=ΔDEF" (т. е. "треугольник АВС конгруэнтен треугольнику DEF"), мы делаем вывод, что все треугольники из какого-то определенного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. "Надлежащие обстоятельства", которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некоторые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.
Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор виртуальной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего лучшего понимания, заставят наши символы вести себя в уместной степени как абстрактные категории, которые они обозначают. Как мы можем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые критики возражают против наших правил вывода, потому что они считают, что наши символы будут вести себя отлично от абстрактных категорий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Геделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательства, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что наша интуиция говорит, что символы будут копировать абстрактные категории в совершенстве. Все, что мы можем сделать, - это объяснить. Мы должны объяснить, почему мы думаем, что при определенных обстоятельствах символы будут вести себя желаемым образом в соответствии с высказанными нами правилами. А критики могут объяснить, почему они предпочитают теорию, конкурирующую с нашей. Расхождение во мнениях относительно двух таких теорий - это частично расхождение во мнениях относительно наблюдаемого поведения физических объектов. Такого рода расхождения могут быть адресованы нормальными методами науки. Иногда они легко разрешимы, а иногда - нет. Другой причиной подобного расхождения может стать концептуальный конфликт, связанный с природой самих абстрактных категорий. И вновь дело за конкурирующими объяснениями, на этот раз объяснениями не физических объектов, а абстрактных категорий. Либо мы придем к общему пониманию со своими критиками, либо согласимся, что говорим о двух различных абстрактных объектах, либо вообще не придем к согласию. Нет никаких гарантий. Таким образом, в противоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью исключительно методологических средств.
На первый взгляд, характер традиционного символического доказательства кажется весьма отличным от характера "практического" виртуального доказательства. Но теперь мы видим, что они относятся друг к другу так же, как вычисления относятся к физическим экспериментам. Любой физический эксперимент можно рассматривать как вычисление, и любое вычисление - как физический эксперимент. В обоих видах доказательства физическими категориями (независимо от того, находятся они в виртуальной реальности или нет) манипулируют в соответствии с правилами. В обоих видах доказательства физические категории представляют интересующие нас абстрактные категории. И в обоих случаях надежность доказательства зависит от истинности теории о том, что физические и абстрактные категории действительно имеют соответствующие свойства.
Из вышеизложенного рассуждения также можно увидеть, что доказательство - это физический процесс. В действительности, доказательство - это разновидность вычисления. "Доказать" высказывание значит осуществить вычисление, которое, будучи выполненным правильно, устанавливает истинность высказывания. Используя слово "доказательство" для обозначения объекта, например, текста, написанного чернилами на бумаге, мы имеем в виду, что этот объект можно использовать в качестве программы для воссоздания вычисления соответствующего вида.
Следовательно, ни математические теоремы, ни процесс математического доказательства, ни впечатление о математической интуиции не подтверждает никакую определенность. Ничто не подтверждает ее. Наше математическое знание, так же как и наше научное знание, может быть глубоким и широким, может быть неуловимым и удивительно объяснительным, может быть принятым без разногласий; но оно не может быть определенным. Никто не может гарантировать, что в доказательстве, которое ранее считалось обоснованным, однажды не обнаружат глубокое недоразумение, казавшееся естественным из-за ранее несомненного "самоочевидного" допущения о физическом мире, или об абстрактном мире, или об отношении некоторых физических и абстрактных категорий.
Именно такое ошибочное, самоочевидное допущение привело к тому, что саму геометрию ошибочно классифицировали как раздел математики в течение двух тысячелетий, приблизительно с 300 года до н.э., когда Евклид написал свой труд "Элементы", до девятнадцатого века (а в некоторых словарях и школьных учебниках до сегодняшнего дня). Геометрия Евклида сформировала часть интуиции любого математика. В конечном счете, некоторые математики начали сомневаться в самоочевидности, в частности, одной из аксиом Евклида (так называемой "аксиомы о параллельных"). Сначала они не сомневались в истинности этой аксиомы. Говорят, что великий немецкий математик Карл Фридрих Гаусс был первым, кто подверг ее проверке. Аксиома о параллельных необходима при доказательстве того, что сумма углов треугольника составляет 180°. Легенда гласит, что в совершенной секретности (из-за боязни быть осмеянным) Гаусс разместил своих ассистентов с фонарями и теодолитами на вершинах трех холмов, чтобы вблизи измерить вершины самого большого треугольника. Он не обнаружил никаких отклонений от предсказаний Евклида, однако теперь мы знаем, что это произошло потому, что его инструменты не обладали достаточной чувствительностью. Общая теория относительности Эйнштейна включала новую теорию геометрии, которая противоречила геометрии Евклида и была доказана экспериментально. Сумма углов реального треугольника в действительности не обязательно составляет 180°: истинная сумма зависит от гравитационного поля внутри этого треугольника.
Весьма похожая ошибочная классификация была вызвана фундаментальной ошибкой относительно самой природы математики, которую математики допускали с античных времен, а именно, что математическое знание более определенно, чем какая-либо другая форма знания. Такая ошибка не оставляет выбора классификации теории доказательства, кроме как части математики, поскольку математическая теорема не может быть определенной, если теория, подтверждающая метод ее доказательства, сама по себе неопределенна. Но как мы только что видели, теория доказательства не является разделом математики - она является наукой. Доказательства не абстрактны. Не существует абстрактного доказательство чего-либо, так же, как не существует абстрактного вычисления чего-либо. Конечно, можно определить класс абстрактных категорий и назвать их "доказательствами", но эти "доказательства" не могут подтвердить математические утверждения, потому что их невозможно увидеть. Они могут убедить кого-либо в истинности высказывания не более, чем абстрактный генератор виртуальной реальности, который физически не существует, может убедить людей, что они находятся в другой среде, или абстрактный компьютер может разложить на множители число. Математическая "теория доказательств" не имела бы никакого отношения к тому, какие математические истины можно или нельзя доказать в действительности, точно так же, как теория абстрактного "вычисления" не имеет никакого отношения к тому, что математики - или кто-то еще - могут или не могут вычислить в реальности, по крайней мере, если не существует отдельной эмпирической причины считать, что абстрактные "вычисления" в этой теории похожи на реальные вычисления. Вычисления, включая и особые вычисления, квалифицируемые как доказательства, - это физические процессы. Теория доказательств говорит о том, как обеспечить, чтобы эти процессы правильно имитировали абстрактные категории, которые они должны имитировать.
Теоремы Геделя называли "первыми новыми теоремами чистой логики за две тысячи лет". Но это не так: теоремы Геделя говорят о том, что можно, а что нельзя доказать, а доказательство - это физический процесс. В теории доказательства нет ничего, что касалось бы только чистой логики. Новый способ доказательства Геделем общих утверждений о доказательствах зависит от определенных допущений о том, какие физические процессы могут или не могут представить абстрактный факт так. что наблюдатель сможет обнаружить его и убедиться, благодаря ему. Гедель перевел такие допущения в явное и выраженное невербально доказательство своих результатов. Его результаты были самоочевидно доказанными не потому, что были "чисто логическими", а потому, что математики нашли эти допущения самоочевидными.
Одно из сделанных Геделем допущений было традиционным: доказательство может иметь только конечное число этапов. Интуитивное доказательство этого допущения состоит в том, что мы конечные существа и никогда не смогли бы постичь буквально бесконечное число утверждений. Кстати, именно эта интуиция стала причиной беспокойства многих математиков, когда в 1976 году Кеннет Эппел и Вольфганг Хакен использовали компьютер для доказательства знаменитой "гипотезы четырех цветов" (о том, что, используя всего четыре разных цвета, любую карту, нарисованную на плоскости, можно раскрасить так, что никакие два примыкающих района не будут иметь одинаковый цвет). Программа требовала сотни часов машинного времени, что означало, что этапы доказательства, если оно было бы записано, не смог бы прочитать ни один человек за много жизней, не говоря уже о том, чтобы признать его самоочевидным. "Следует ли воспринимать слово компьютера как то, что гипотеза четырех цветов доказана?" - задавались вопросом скептики - хотя им и в голову никогда не приходило составить каталог всех импульсов всех нейронов своего собственного мозга при принятии относительно "простого" доказательства.
Такое же беспокойство может показаться более оправданным, будучи примененным к предполагаемому решению с бесконечным числом этапов. Но что такое "этап" и что такое "бесконечный"? В пятом веке до н.э. Зенон из Элеи на основе похожей интуиции пришел к выводу, Что Ахиллес никогда не обгонит черепаху, если у черепахи будет преимущество на старте. Как-никак, к тому времени, когда Ахиллес поравняется с черепахой, она еще немножко продвинется вперед. К тому времени, когда он достигнет этой точки, она продвинется еще чуть-чуть и так до бесконечности. Таким образом, эта процедура "обгона" потребует от Ахиллеса выполнения бесконечного количества этапов обгона, которое он, будучи конечным существом, предположительно выполнить не сможет. Но то, что Ахиллес сможет сделать, невозможно обнаружить с помощью чистой логики. Это полностью зависит от того, что он сможет сделать в соответствии с управляющими законами физики. И если эти законы скажут, что он обгонит черепаху, то он ее обгонит. В соответствии с классической физикой обгон требует бесконечного количества этапов вида "переход на настоящее место нахождения черепахи". В этом смысле данное действие является вычислительно бесконечным. Точно так же, если рассматривать как доказательство то, что одна абстрактная величина становится больше другой при применении данного набора действий, то это доказательство с бесконечным количеством этапов. Однако соответствующие законы обозначают это доказательство как физически конечный процесс - и только это имеет значение.
Различные ошибки, которые математики во все времена допускали в том, что касается доказательства и определенности, вполне естественны. Настоящее обсуждение имеет своей целью привести нас к ожиданию того, что современная точка зрения тоже не будет вечной. Но уверенность, с которой математики натыкались на эти ошибки, а также их неспособность признать даже возможность ошибки во всем этом, на мой взгляд, связана с древней и широко распространенной путаницей между методами математики и ее предметом. Сейчас я поясню это. В отличие от отношений между физическими категориями, отношения между абстрактными категориями независимы от каких бы то ни было непредвиденных фактов и законов физики. Они абсолютно и объективно определяются автономными свойствами самих абстрактных категорий. Математика, изучающая эти отношения и свойства, таким образом, изучает абсолютно необходимые истины. Другими словами, истины, изучаемые математикой, абсолютно определенны. Но это не говорит ни об определенности самого нашего знания этих необходимых истин, ни о том, что методы математики дают своим выводам необходимую им истинность. Как-никак, математика изучает еще и ложные утверждения и парадоксы. И это не означает, что выводы подобного изучения непременно являются ложными или парадоксальными. Необходимая истина - это всего лишь предмет математики, а не награда за то, что мы занимаемся математикой. Математическая определенность не является и не может являться целью математики. Ее целью является даже не математическая истина, определенная или какая-нибудь еще. Ее целью является и должно являться математическое объяснение.
Почему же тогда математика работает так, как она работает? Почему она ведет к выводам, которые, несмотря на их неопределенность, можно принимать и без проблем применять, по крайней мере, в течение тысячи лет? В конечном счете, причина в том, что некоторая часть нашего знания физического мира столь же надежна и непротиворечива. А когда мы понимаем физический мир достаточно хорошо, мы также понимаем, какие физические объекты имеют общие свойства с абстрактными. Но, в принципе, надежность нашего знания математики остается второстепенной по отношению к нашему знанию физической реальности. Обоснованность каждого математического доказательства полностью зависит от того, правы ли мы относительно правил, управляющих поведением каких-либо физических объектов, будь то генераторы виртуальной реальности, чернила и бумага или наш собственный мозг.
Таким образом, математическая интуиция - это вид физической интуиции. Физическая интуиция - набор эмпирических правил (некоторые из которых возможно врожденные, а большая часть - развившиеся в детстве), о том, как ведет себя физический мир. Например, у нас есть интуиция существования физических объектов и того, что эти объекты обладают определенными свойствами: формой, цветом, весом и положением в пространстве, некоторые из этих свойств существуют, даже когда за этими объектами не наблюдают. Другая интуиция заключается в том, что существует физическая переменная - время - по отношению к которой изменяются свойства, но, тем не менее, объекты способны сохранять свою идентичность с течением времени. Еще одна интуиция заключается в том, что объекты взаимодействуют и что это взаимодействие может изменить некоторые их свойства. Математическая интуиция описывает способ демонстрации свойств абстрактных категорий физическим миром. Одним из таких направлений интуиции является абстрактный закон или, по крайней мере, объяснение, лежащее в основе поведения объектов. Интуицию, предполагающую, что пространство допускает замкнутые поверхности, отделяющие "внутреннюю часть" от "наружной части", можно уточнить, преобразовав ее в математическую интуицию множества, разделяющего все на члены и нечлены этого множества. Однако дальнейшее уточнение математиками показало, что эта интуиция перестает быть точной, когда рассматриваемое множество содержит "слишком много" членов (слишком большую степень бесконечности членов).
Даже если бы хоть какая-то физическая или математическая интуиция была врожденной, это не предоставило бы ей какого-то особого авторитета. Врожденную интуицию невозможно воспринимать как суррогат "воспоминаний" Платона о мире Форм. Ибо ложность многих направлений интуиции, которые случайно развились у людей в процессе эволюции, - банальное наблюдение. Например, человеческий глаз и математическое обеспечение, которое им управляет, воплощают ложную теорию о том, что желтый свет состоит из смеси красного и зеленого света (в смысле, что желтый свет дает нам точно такое же ощущение как смесь красного и зеленого света). В реальности все три типа света имеют разные частоты и не могут быть созданы посредством смешивания света других частот. Тот факт, что смесь красного и зеленого света кажется нам желтым светом, не имеет ничего общего со свойствами света, но связан со свойствами наших глаз. Это результат компромисса, имевшего место на каком-то этапе отдаленной эволюции наших далеких предков. Существует только возможность (хотя я в нее не верю), что геометрия Евклида или логика Аристотеля каким-то образом встроены в структуру нашего мозга, как считал философ Иммануил Кант. Но это логически не означало бы их истинности. Даже если представить еще более невероятный случай, что у нас есть врожденная интуиция, от которой мы не в состоянии избавиться, такая интуиция, тем не менее, не стала бы необходимой истиной.
Значит, реальность действительно имеет более объединенную структуру, чем это было бы возможно, если бы математическое знание можно было проверить с определенностью. Математические категории являются частью структуры реальности, поскольку они сложны и автономны. Создаваемая ими реальность некоторым образом похожа на область абстракций, о которой размышлял Платон: несмотря на то, что по определению они неосязаемы, они объективно существуют и имеют свойства, независимые от законов физики. Однако именно физика позволяет нам приобрести знание об этой области. И она накладывает строгие ограничения. Тогда как в физической реальности постижимо все, постижимые математические истины в точности составляют бесконечно малое меньшинство, которое оказывается в точности соответствующим какой-то физической истине - как тот факт, что если определенными символами, написанными чернилами на бумаге, манипулировать определенным образом, появятся другие определенные символы. У нас нет другого выбора, кроме как принять, что непостижимые математические категории тоже реальны, т.к. они сложным образом возникают в наших объяснениях постижимых категорий.
Существуют физические объекты, например, пальцы, компьютеры и мозг, поведение которых может моделировать поведение определенных абстрактных объектов. Таким образом, структура физической реальности дает нам окно в мир абстракций. Это очень узкое окно, оно предоставляет только ограниченный диапазон перспектив. Некоторые из структур, которые мы видим из него, например, натуральные числа или правила вывода классической логики, кажутся такими же важными или "фундаментальными" для абстрактного мира, какими глубокие законы природы являются для физического мира. Но эта видимость может ввести в заблуждение. Поскольку действительно мы видим только то, что некоторые абстрактные структуры фундаментальны по отношению к нашему пониманию абстракций, у нас нет никакой причины считать, что эти структуры объективно важны в абстрактном мире. Просто некоторые абстрактные категории ближе, чем другие, и их проще увидеть из нашего окна.