Задачи для 9 класса 12-ой олимпиады "Третье тысячелетие"

Jan 27, 2012 00:09

1. Выпуклый 20-гранник имеет 12 вершин. В каждой грани записали число её сторон. Чему может быть равна сумма всех 20 чисел?
2. Подберите подходящие 9 подряд идущих натуральных чисел и поставьте перед каждым из них знак + или − так, чтобы алгебраическая сумма оказалась равна 2012.
3. Некоторый многоугольник удалось поместить внутрь квадрата, периметр которого в 7 раз меньше. Каково наименьшее число сторон такого многоугольника?
4. Пусть S(n) − суммa цифр числa n. Найдите наименьшее натуральное число n, которое делится на 2012−S(n).
5. Найдите хотя бы одну пару натуральных чисел А и В, для которой А3−В2=2000000.
6. Расставьте в клетках квадрата 9х9 различные натуральные числа так, чтобы сумма в каждой строке и в каждом столбце была равна 2012.

олимпиада

Previous post Next post
Up