12 апреля 1961 года самолет ИЛ-14 вылетел с космодрома Байконур к месту приземления корабля «Восток» с первым в мире космонавтом на борту. Среди пассажиров этого самолета был один из основоположников космонавтики, соратник Королёва - ведущий специалист в области управления и ориентации космических аппаратов, доктор технических наук, профессор Борис Викторович Раушенбах (1915-2001).
Б.В. Раушенбах
Впоследствии Борис Раушенбах, занимаясь проблемой стыковки космических кораблей «Союз», стал изучать живопись и увлекся русской иконой. Почему? На корабле «Союз» не было переднего иллюминатора, а располагался стыковочный узел. Во время стыковки для наблюдения за другим кораблем применялись оптические приборы, которые давали изображение по законам геометрической оптики (линейной перспективы). В связи с этим Борис Викторович пытался ответить на вопрос: насколько точно эти изображения передают пространство, ведь стыковка кораблей требовала идеальной точности?
Дело в том, что реальный мир и видимый нами мир - не одно и то же. Глядя, например, на железнодорожное полотно, мы видим, что рельсы на горизонте сходятся, хотя прекрасно знаем, что это не так, поэтому ни один машинист, увидев такую картину, не станет останавливать поезд.
Объяснение этой зрительной иллюзии было известно еще в Древней Греции. Евклид, изучавший человеческое зрение, в своем сочинении «Оптика» писал, что человек воспринимает предметы, когда прямолинейные лучи света, отраженные от них, сходятся в глазу. Таким образом, всю систему лучей зрения можно представить в виде «пирамиды зрения»: ее основанием является рассматриваемый предмет, а ее вершина будет находиться в глазу зрителя. Евклид доказал, что из двух предметов одного размера более удаленный из них, т.е. видимый под бОльшим лучом зрения, будет человеку казаться меньшим.
Идеи Евклида много веков ждали своего часа, пока в XIV столетии итальянский архитектор Филиппо Брунеллески не сделал следующий шаг: он рассек картинной плоскостью зрительную пирамиду и получил на ней центральную проекцию объекта, или перспективу. Таким образом, прямая (линейная) перспектива, которой стали пользоваться художники, была методом, учитывавшим работу человеческого глаза. Именно поэтому прямая перспектива дала изображения, очень похожие на видимую натуру.
Прямая перспектива в качестве основного правила построения пространства и предметов вошла в произведения западноевропейских живописцев и графиков, а потом и российских, получавших образование в Академии художеств. Таким образом, глаз европейского человека ХХ века был воспитан на прямой перспективе. А так называемая «обратная» перспектива, которая применялась в древнерусской иконописи, воспринималась «неправильной», «наивной», «примитивной».
Но вернемся к Борису Раушенбаху. В связи с разработкой систем управления космических кораблей он заинтересовался проблемами художественной перспективы и стал изучать произведения мировой живописи. Он пришел к выводу, что все известные перспективные системы, которыми когда-либо пользовались художники (параллельная в Китае и Японии, прямая или линейная в Европе, обратная в Византии и на Руси), являются частными случаями перспективы перцептивной. Т.е. той, которая создает образ видимого пространства в сознании человека (в этом процессе принимают участие не только глаза, но и мозг, вносящий свои коррективы).
В 1966 году Борис Раушенбах попал в Музей древнерусской культуры и искусства имени Андрея Рублёва, где его поразил мир икон с их необычным пространством. Вместе с тем его удивили слова экскурсовода, который рассказывал, что древнерусские художники «не умели», «не знали», «не могли»… «Как же так? - подумал Борис Викторович. - Рублёв, написавший такой шедевр как «Троица», не сумел изобразить пространство?»
Спасо-Андроников монастырь, в котором располагается
Центральный музей древнерусской культуры и искусства имени Андрея Рублёва.
Фото 14 марта 2014 года
Этот вопрос на самом деле не простой. Рассмотрим икону «Троица». Подножия правого и левого ангелов на ней показаны как бы с разных точек зрения: на правого ангела мы смотрим справа, а на левого - слева. Край правого табурета не параллелен краю правого подножия, показанного в аксонометрии, а край левого табурета, изображенного в слабой обратной перспективе, и левого подножия не имеют общей точки схода. А как ведут себя края престола, закрытые коленями ангелов? Они расходятся.
А. Рублёв. Троица. Икона. Первая четверть XV века
Подвергнув математическому анализу перспективные построения в иконе «Троица» и других иконописных произведениях, Борис Раушенбах нашел им научное объяснение. Он пришел к выводу, что для очень близкого и не слишком протяженного плана или для очень далекого и не слишком большого объекта перцептивная перспектива практически совпадает с аксонометрией. Кроме того, поскольку у человека два глаза (бинокулярное зрение), то на близком расстоянии и не слишком протяженном плане перцептивная перспектива может принять вид обратной перспективы.
Слово «икона» в переводе с греческого означает «образ», «портрет». В центре внимания иконописца всегда были изображения Христа, Богоматери, святых и сцен из их жизни (жития). Следовательно, в иконе господствовал жанр «портрета», ближнего плана, поэтому в ней и наблюдается обратная перспектива.
Изучая живопись, а вернее математику живописи, Борис Раушенбах создал общую теорию перспективы. Главный вывод ученого таков: не существует идеальной научной системы перспективы, а есть бесчисленное множество равноправных систем, отличающихся друг от друга тем, на какие элементы изображения смещены ошибки. Отсюда следует другой вывод: невозможно взаимооднозначно и непрерывно отобразить трехмерное пространство на двухмерной плоскости.
Свою теорию Борис Раушенбах изложил в книге «Системы перспективы в изобразительном искусстве. Общая теория перспективы» (М., 1986).
Изучение иконы требовало и богословских знаний, поэтому Раушенбах стал изучать и эту область, написав статью «Логика троичности» (Вопросы философии, 1993. № 3). Он вспоминал: «В теологию меня привели споры вокруг христианской Троицы. Как человеку науки, мне было непонятно триединство Троицы, я захотел опровергнуть этот кажущийся абсурд. Но... понятие Троицы оказалось логически безупречно. Так что, размышляя над Троицей, я, по сути, занимался математикой». «Меня интересовал чисто теоретический вопрос: может ли формальная логика допустить существование Троицы. Вроде бы это абсурд: один объект - и вдруг три объекта. Но, к своей радости, я обнаружил, что подобное в математике есть. Вектор! Он имеет три компонента, но он один. И если кого-то удивляет троичный догмат, то только потому, что он не знает математики. Три и один - это одно и то же!»