Электрический телеграф создавался и развивался в 1830-х годах в разных странах. Несколько инженеров практически одновременно подошли к идее передавать информацию по проводам. В России тоже был свой пионер - барон Павел Львович Шиллинг, и так случилось, что именно он успел раньше всех.
Впрочем, всё началось с Френсиса Рональдса. В 1816 году он, молодой учёный, построил первый в мире электрический телеграф, способный передавать сигналы на расстояние почти в 13 километров. Всю линию он проложил в стеклянном изоляционном кожухе прямо в саду своего дома, Келмскотт-хауса в Хаммерсмите (ныне это территория Лондона). Конечно, его сад был длиной не 13 километров - Рональдс укладывал линию плотно, зигзагом. Убедившись, что передавать сигналы таким образом действительно можно, он предложил свой проект военному ведомству для решения задач связи, но военные не заинтересовались. Изобретение, так и не запатентованное, повисло в воздухе. Проблемой было то, что Рональдс зафиксировал факт передачи информации, но не разработал никакой системы шифрования для перевода импульсов на человеческий язык.
А далее вплоть до 1830-х годов в этом направлении не предпринималось ничего нового. Изобретение Рональдса благополучно забыли, поскольку он опередил своё время. А затем у телеграфа появился новый изобретатель.
Говорят, что строки Пушкина «О сколько нам открытий чудных готовит просвещенья дух…» посвящены именно Шиллингу. Они дружили, хотя барон был на 13 лет старше. Разница в возрасте тут роли не играла: оба вращались в довольно узкой прослойке русских интеллектуалов, а Пушкин, будучи полным профаном в точных науках, всегда ими живо интересовался и поражался механическим и электрическим изобретениям. В общем, почва для того, чтобы сойтись, была.
Но рассказ в общем-то не об этом, а о бароне Шиллинге, родившемся в Ревеле 5 (16) апреля 1786 в семье военного. Отца вскоре перевели в Казань, где он командовал 23-м Низовским пехотным полком, а в 1797 году Павел, как сын военного, поступил в кадетский корпус в Петербурге. Правда, вышел он оттуда не солдатом, а дипломатом, работал в Генштабе, затем перевёлся в Коллегию иностранных дел (нынешний МИД) и некоторое время работал в российском посольстве в Мюнхене. Стремительная карьера была обусловлена тем, что мать Павла после смерти супруга повторно вышла замуж за барона Карла Яковлевича Бюлера, влиятельного дипломата, специализировавшегося на русско-немецких отношениях.
В Мюнхене Шиллинг познакомился с известным физиологом и по совместительству лечащим врачом русской миссии Самуэлем Томасом Зёммерингом, который, помимо всего прочего, занимался электрическими опытами. И эта область науки затянула барона раз и навсегда. Стоит отметить, что техника никогда не была его основным полем деятельности. В первую очередь он оставался дипломатом и исследователем: основал литографию для печати географических карт, путешествовал по Востоку, собирая коллекцию тибетского, монгольского и сибирского фольклора, и даже членом-корреспондентом Петербургской академии наук стал вовсе не по электрической, а по литературной части за исследовательские труды в области культуры восточных стран и племен. А первую серьёзную работу по электричеству барон представил в 1812 году, и она была связана с военным делом.
Любые инициативы, способные принести какую-нибудь пользу армии, в России обычно финансировались и поддерживались. Если бы Шиллинг занялся бытовым электричеством, он вряд ли снискал бы успех и славу. Но уже в 1810 году в европейских дипломатических кругах начали вслух говорить о предстоящей войне Франции с Россией, а годом позже намерение Франции напасть было таким же явным, как если бы Наполеон объявил войну официально.
Поэтому свою научную мысль Шиллинг направил на применение электричества в военных целях - и разработал способ электрического подрыва морских мин. Технологию он придумал ещё в Мюнхене, а когда в начале войны посольство спешно эвакуировалось в Петербург, предложил её армейскому ведомству. Устройство было простейшим: мина плавала на воде, солдат из сапёрного батальона замыкал контакт на берегу, искра по изолированному проводу бежала к мине и подрывала её. Такой принцип не подходил для открытых вод, но хорошо мог показать себя на реках и озерах, где требовался не очень длинный кабель. При этом именно кабель был основным предметом изобретения: Шиллинг придумал изоляцию из шёлка, пропитанного раствором каучука в льняном масле, позволявшую безопасно прокладывать провода под водой.
Технологию Шиллинг показал прямо на Неве, и она была тепло принята, профинансирована и со временем внедрена. Сам Шиллинг в это же время добровольно вступил в действующую армию и боевым офицером дошел до Парижа. Звучит странно, но, находясь на территории государства-агрессора, он плотно общался с действующей Французской академией наук и сдружился с Андре-Мари Ампером и молодым Франсуа Араго. Франция и при Наполеоне в равной мере умудрялась сохранять модный статус среди российской элиты и интеллигенции, так что, придя в Париж солдатом, Шиллинг быстро вернулся к жизни учёного.
В принципе, если читать биографию Шиллинга, становится видно, что большую часть времени он посвящал этнографии и востоковедению. В 1820-1830-х годах он путешествовал с правительственными экспедициями по Бурятии, Восточной Сибири, Монголии и совершил просто-таки этнографический подвиг: собрал крупнейшую в мире коллекцию литературных памятников тибетско-монгольской культуры. В основном он искал оригинальные рукописи, но для пополнения коллекции текстами, существовавшими в единственном экземпляре или передававшимися изустно, он нанял в Кяхте целую артель переписчиков.
Помимо того, в 1813 году, будучи офицером действующей армии, Шиллинг доложил царю о необходимости устройства в России литографической мастерской. Литография, новая на тот момент технология, позволяла копировать оригинальные рисунки и карты. Александр I оценил доклад и поручил Шиллингу организацию литографии по образцу немецкой, в Маннгейме. В заключительную фазу войны Россия вступила уже с современными картами, отпечатанными литографическим методом.
Ещё Шиллинг, будучи сотрудником цифирной экспедиции Министерства иностранных дел, плотно занимался практической криптографией. Для армии и дипломатических миссий он разработал несколько биграммных шифров - так называется метод, при котором шифруются пары из двух букв (в ранних версиях - идущие подряд, в поздних - произвольные, заданные алгоритмом). В ряде источников указывается, что именно Шиллинг и изобрёл такие шифры, но это, конечно, неправда, биграммы описывал ещё основоположник криптографии как научного направления немецкий монах и лексикограф Иоганн Тритемий в начале XVI века. Другое дело, что Шиллинг разработал метод быстрого шифрования, специальную наборную решётку, механическим образом меняющую пары знаков, а заодно показал, что зашифрованный биграммой текст можно без потери смысла дополнить случайным набором букв в хаотическом порядке. Это не помешает расшифровке при наличии ключа, но серьёзно усложнит взлом.
Теперь стоит вернуться к доктору Самуэлю Томасу Зёммерингу. Его опыты с электричеством были хорошо известны в Германии, и 1809 году баварский король Максимилиан I то ли предложил, то ли приказал учёному создать телеграф, который сможет, в отличие от используемого в те времена сигнально-оптического, работать в любую погоду. Наиболее известной в Европе в то время была система братьев Шапп, представлявшая собой сеть башен, на крышах которых устанавливались сигнальные семафоры. Каждый состоял из опоры и трёх подвижных друг относительно друга деталей, образовывающих в общей сложности 196 различных визуальных комбинаций, хорошо заметных на расстоянии от 12 до 25 километров в зависимости от рельефа.
Зёммеринг был хорошо знаком с уже проводившимися опытами в области электрической телеграфии, и, в частности, он общался с каталонским физиком Франсиско Сальва-и-Кампильо. За 15 лет до того Кампильо демонстрировал в Барселоне систему из 35 проводов, проложенных в изоляционном кожухе и соответствующих знакам алфавита. Концы проводов были погружены в прозрачные склянки с раствором кислоты. При замыкании провода в соответствующей ёмкости начинался процесс разложения и выделялись пузырьки кислорода. Принимающий сообщение смотрел, где именно «пузырит», и записывал букву. Зёммеринг усовершенствовал систему и сократил количество проводов до 24, но прокладка и изоляция даже такого количества проводов на большие расстояния оказалась дорогостоящим и ненадёжным делом - изобретателю удалось достигнуть максимального удаления лишь в три километра.
Среди друзей Шиллинга был ещё один великий учёный - Андре-Мари Ампер. В 1824 году он писал о теоретической возможности создать телеграф с использованием гальванометров. То, что электрический ток имел свойство воздействовать на магнитную стрелку, до того момента использовалось лишь для изучения его свойств, но не в практических целях. Шиллинг же, соединив идеи Зёммеринга и Ампера, построил телеграф. Как оказалось, полностью рабочий.
Впервые он представил свою конструкцию 9 (21) октября 1832 года в собственной квартире в доме Офросимовой на Царицыном лугу (ныне - Марсово поле, дом 7). Его прибор работал следующим образом. Станция передачи была оснащена клавиатурой, подобной пианинной; различные сочетания клавиш замыкали разные цепи. Восемь проводов вели от клавиатуры к приёмной станции. Один замыкал цепь звонка, знаменующего начало передачи. Ещё один служил для обратного тока. Остальные шесть применялись для передачи сообщения.
Приёмная станция состояла из шести мультипликаторов, которые, по сути, были несколько усложнёнными гальванометрами: при замыкании одного из проводов соответствующий гальванометр реагировал на электрическое поле и вращался на нити. А над каждым из гальванометров был прикреплён круглый флажок с лицевой чёрной и оборотной белой сторонами. Соответственно, Шиллинг мог удалённо, пуская ток в том или другом направлении, развернуть любой из флажков, получив одно из сочетаний шестизначного кода (при отсутствии тока кружки стояли ребром). Например: белый-чёрный-чёрный-белый-белый-белый. Почему их было шесть? Дело в том, что Шиллинг разработал шестизначный код для отображения всех букв алфавита, а заодно и цифр - по сути, прообраз азбуки Морзе, только последний привёл всю систему к более компактному двузначному коду.
Демонстрация первого телеграфа была примечательна тем, что на ней присутствовал император Николай I и текст, переданный из одной комнаты в другую, он составил лично. В общем, Шиллинг практически сразу получил царское благословение.
А в 1833 году финский физик Иоганн Яков Нервандер, работавший в Петербурге, предложил градуированный гальванометр, то есть прибор, позволяющий фиксировать точное отклонение стрелки, а не просто факт такового. Шиллинг тут же взял это на вооружение и к 1835 году разработал вторую (на самом деле неизвестно какую по счёту: он совершенствовал систему много раз) версию телеграфного аппарата, в котором станции соединялись уже всего двумя проводами. Звонок начала трансляции здесь звенел от первого замыкания передаточного провода, дальше начиналась сама передача. В зависимости от комбинации клавиш подавался определённый ток, а стрелка единственного гальванометра приёмного аппарата отклонялась на заданную величину. Она имела 36 возможных положений, соответствующих 36 буквам русского алфавита. Впрочем, ничто не мешало изменить шкалу под любые другие знаки.
Шиллинг не скрывал своего прибора. Он демонстрировал его публично, в том числе в Берлине на съезде немецких естествоиспытателей в 1835 году. Его системой заинтересовались, и в 1836-м британское правительство сделало барону официальное предложение работать над телеграфом в Англии. Но к тому времени Шиллинг уже получил заказ от Адмиралтейства на соединение телеграфной линией двух корпусов огромного комплекса и от предложения англичан отказался. Адмиралтейский телеграф стал первой в истории электрической системой, передающей информацию на расстояние не в качестве эксперимента, а с самой что ни на есть практической целью.
Следующий заказ изобретатель получил сразу после технической проверки Адмиралтейской линии: правительству понадобился телеграф между Петергофом и военно-морской базой в Кронштадте. Проект прокладки проводов в каучуковой изоляции по дну Финского залива был составлен и в мае 1837 года одобрен высочайшим указом. Тогда же Шиллинг предложил крепить провода на столбах, закрепляя их на керамических изоляторах.
Но в это самое время Павла Львовича начала мучить злокачественная опухоль. Операцию по её удалению провёл сам Николай Федорович Арендт, лейб-медик Николая I, но неудачно. 6 августа 1837 года Арендт потерял ещё одного великого пациента (всего за полгода до этого у него на руках скончался Александр Сергеевич Пушкин).
Инженера, который мог бы продолжить работы Шиллинга, в России, к сожалению, не нашлось. Проект был свёрнут. Первым коммерческим электрическим телеграфом стала система, разработанная британцами Уильямом Фотергиллом Куком и Чарльзом Уитстоуном на базе системы Шиллинга. Это не скрывалось: Кук указывал, что исходником его схемы было изобретение Шиллинга, о котором он узнал из лекций немецкого физика Георга Вильгельма Мунке в Гейдельбергском университете. Первая демонстрация системы Кука-Уитстоуна прошла 25 июля 1837 года на железнодорожной линии между Лондоном и Бирмингемом - Шиллинг тогда уже лежал на смертном одре. В том же году запатентовал свою схему Сэмюэл Морзе.
Впоследствии телеграф множество раз совершенствовался, новые системы появлялись как независимо, так и с опорой на более ранние разработки, в том числе и на изобретение Павла Шиллинга. В России дело великого учёного продолжил спустя несколько лет после его смерти Борис Якоби.
[ ✍ ] Кто первый придумал телеграф и в каком году? Краткая история создания телеграфа.
Этапы изобретения первого в мире электромагнитного телеграфа.
Когда в России появился первый телеграф и кто его создал?