Звонкин малыши и математика. Больше меньше и равно для малышей. Пиаже.

May 24, 2022 12:05

Характерно, что сам Пиаже считал себя не психологом, а эпистемологом, т. е. специалистом по теории познания. Эта наука призвана ответить на вопрос, каким образом мы можем вообще что-то знать. Если в поисках ответа мы хотим не просто переливать друг в друга пустые слова, а заниматься конкретными исследованиями, то у нас есть два пути: либо изучать историю познания - каким образом люди постепенно познавали мир; либо изучать, каким образом это происходит у маленьких детей. Пиаже пошёл по второму пути.
Из всех многочисленных грандиозных конструкций, теоретических построений и экспериментальных исследований Пиаже наиболее широкую известность приобрели так называемые феномены Пиаже[1]. Я уже упоминал их выше. Маленький ребёнок не понимает, что если переложить несколько предметов (камешков, кубиков….) иначе, то их число при этом не изменится. Тем самым и само понятие числа остаётся для него недоступным, хотя он, быть может, и умеет «считать до ста». Потом ребёнок подрастает, и вместе с этим приходит осознание вышеуказанного закона сохранения. Но всё равно приходится ждать ещё года полтора- два, пока он не осознаёт аналогичный закон для непрерывных количеств: если раскатать шарик пластилина в колбаску, то количество пластилина останется тем же; если перелить воду из стакана в миску, то количество воды тоже не изменится. А также и многочисленные «смежные» закономерности - типа того, что если есть два одинаковых количества, и от одного из них забрали больше, а от другого меньше, то там, где забрали больше, осталось меньше. Во всё это трудно поверить, настолько указанные принципы кажутся нам самоочевидными.
В этом замечательном открытии самым поразительным мне представляется то, что для него не нужны были ни космические ракеты, ни синхрофазотроны, ни лазеры. Оно в буквальном смысле «вертелось у всех под ногами». Не обязательно было дожидаться XX века: Платону и Евклиду оно было так же доступно, как и нам. Но - не пришло в голову. Потребовался интерес к познавательной функции человека, правильная постановка вопроса, недюжинная наблюдательность, ну и, разумеется, обширный эксперимент.

До сих пор, по прошествии многих десятилетий, вы встретите людей, которые при их упоминании только рукой махнут: мол, глупости всё это. Ведь мы же задаём ребёнку вопрос посредством слов, не так ли? Мы спрашиваем, где больше, где меньше, где поровну. А кто и когда объяснял ему смысл этих слов, их, если угодно, семантику? Просто он их не так понимает, как мы, вот и всё. Лучше всего эту идею выразил один мой знакомый математический логик:
- Ведь ты же не дал им определения слова «больше». Вот они и понимают его по-своему. Они считают, что «больше» - это значит, что ряд длиннее.
Что тут можно возразить? В самом деле, определения не давал. А что же я должен был сказать? Что существует биекция между одним множеством и собственным подмножеством другого множества? Никаких вопросов это не снимает: откуда же знать, что если такая биекция нашлась один раз, то найдётся и в другой раз? Видимо, надо было доказать такую лемму… Я спорю, но сам чувствую, что вяло. Вот, мол, в опытах вместе с детьми взвешивали куски пластилина до и после раскатывания в колбаску… Ну и что, что взвешивали! Ребёнок же не знает, как устроены весы и что означают их показания.
Этот спор можно вести до бесконечности: выхода из заколдованного круга не существует. Как бы мы ни общались с ребёнком, в какой бы форме ни ставили ему вопрос, всегда будет существовать некое промежуточное звено, некоторый «носитель сигналов», будь то слова, весы или арифметический подсчёт. И всегда можно свалить всю вину на то, что этот «интерфейс», этот «протокол обмена» недостаточно формализован: мы толкуем его одним образом, а ребёнок другим. Можно, правда, спросить у наших оппонентов, почему в семь лет ребёнок уже правильно отвечает на все вопросы, хотя никаких определений ему по-прежнему никто не давал. Но в серьёзном научном споре такой приём - «а как вы тогда объясните, что…?» - недопустим. Критик не обязан что-либо доказывать или объяснять - эта обязанность целиком возлагается на автора теории. Разумеется, в той мере, в какой в психологии вообще возможны доказательства.
Не вдаваясь в философские глубины этого спора, хочу сообщить моё собственное мнение на этот счёт. После многих лет работы с детьми никакие доказательства мне больше не нужны. Я знаю, что Пиаже прав. Я наблюдал его феномены столько раз и в таких разных обстоятельствах, порой спровоцированных мною, порой совершенно спонтанных, что убеждать меня больше не надо. Помню, например, как собрались гости и не хватило одного стула. Дима - тогда трёхлетний - стал предлагать разные способы, как их можно было бы пересадить. И каждый раз оказывалось, что снова не хватает одного стула. Достаточно было видеть его озадаченную физиономию, чтобы признать: дело тут вовсе не в семантике слова «больше». (Но я бы, разумеется, не обратил на это внимания, если бы Пиаже не подсказал.)
Психологи потратили немало сил и изобретательности, пытаясь научить детей законам сохранения (или, с точки зрения наших оппонентов, объяснить им точный смысл задаваемых вопросов). Результат, как правило, был нулевой. (Об одном - весьма относительном - успехе я расскажу чуть ниже.) Но больше всего мне понравилась вот какая история. Из большой группы испытуемых всё же удалось выделить некоторое количество детей, которые, судя по всему, «всё поняли». По крайней мере, на все вопросы экзаменаторов они отвечали правильно: «Пластилина осталось столько же, потому что мы к нему ничего не прибавили и не убавили. Мы только изменили его форму, и всё». И тогда исследователи сделали ещё один шаг. Они попытались детей разучить. Ответит ребёнок правильно, взвесят они вместе со взрослым пластилиновую колбаску - ан нет: она стала легче! Это зловредный экспериментатор незаметно для ребёнка отщипнул от неё кусочек. И вот оказалось, что те дети, которые легко научились, так же легко и разучились. Они стали отвечать, что, мол, пластилина стало меньше, потому что мы раскатали шарик в колбаску. А вот тех детей, которые знали закон сохранения ещё до эксперимента, знали сами по себе, разучить почему-то не удавалось. В тех же обстоятельствах они говорили:
- Наверно кусочек упал на пол, а мы не заметили.

Ну, хорошо: если так трудно, а то и вовсе невозможно научить ребёнка понятию числа, то чего я, собственно, добиваюсь? В чём цель и смысл моих занятий? Я уже говорил об этом, и буду повторять не раз: смысл занятий - в самих занятиях. В том, чтобы было интересно. В том, что ставить перед собой вопросы и искать на них ответы. В общем, это такой образ жизни.

педагогическое, размышления, осторожно - философия, двери восприятия, цитата, разные люди, математика, детство

Previous post Next post
Up