Самый большой радиотелескоп снял место посадки Apollo 15

Feb 05, 2021 07:50



... и не увидел лунный модуль. Два месяца, как астрофизики мира простились с легендарным телескопом Arecibo, который долгое время обладал самой большой «тарелкой». Китайцы сделали «тарелку» ещё больше, но американцы тем временем модернизировали свои оставшиеся телескопы, и подняли их характеристику в четыре раза.

Трехсотметровая антенна Arecibo долгое время оставалась непревзойденной по площади - это важное преимущество для «прослушивания» очень удаленных и слабых источников радиоизлучения. Но для науки этот телескоп служил не только как «ухо», но и как «голос» - радаром, зондирующим объекты Солнечной системы. В этой роли Arecibo работал в паре с другими радиотелескопами, в последние годы часто с Green Bank Telescope. Телескоп Green Bank меньше - диаметр антенны 100 м, зато она поворотная, в отличие от Arecibo, и для таких тарелок - это бесспорный рекорд.



Диаметр антенны влияет не только на чувствительность телескопа, но и на его разрешающую способность, то, что фотографы называют резкость. Разрешающая способность - это показатель насколько мелкие объекты или минимальное расстояние между ними способен рассмотреть телескоп. Разрешение зависит от двух параметров: диаметра телескопа и длины волны излучения, в котором ведется наблюдение. Так, для одинаковых по размеру телескопов, наблюдение на длине радиоволны 6 мм разрешение будет в 10 тыс раз хуже чем в наблюдении видимого света. То есть чтобы сравниться с 10-сантиметровым любительским телескопом, радиотелескоп должен иметь диаметр 1 километр.

К счастью, радиоастрономы догадались, как обойти это ограничение, если использовать несколько радиотелескопов на расстоянии. Один из способов - интерферометрия, когда объединяются данные от нескольких телескопов. Тогда диаметром считается расстояние между наиболее удаленными телескопами в общей системе. Например антенный массив ALMA состоит из 66 антенн и имеет общий диаметр 16 км, а 27 антенн VLA - диаметр 36 км.



Кстати, VLA вместе c Arecibo снималась в фильме «Контакт».

Если данные с телескопов снимать не аналоговым, а цифровым методом, то можно значительно расширить границы. По сути телескопы можно расставить по всей Земле и тогда диаметр условного телескопа будет ограничиваться только диаметром планеты. Эта технология называется непроизносимым термином радиоинтерферометрия со сверхдлинной базой. Впервые она была теоретически обоснована в СССР при участии Николая Кардашева, и под его же руководством был создан проект «РадиоАстрон» - космический радиотелескоп.

«РадиоАстрон» обладал тарелкой всего в 10 м, но объединяя работу с наземными станциями, позволял создавать радиотелескоп диаметром до десятков и сотен тысяч километров. С российским космическим телескопом работали практически все крупные наземные радиообсерватории, включая Arecibo, но американцы пошли своим путем. Они создали наземную сеть 25-метровых радиотелескопов VLBA, которая раскинулась на 9,5 тыс км от Гавайев до Карибского моря.



Российский аналог «Квазар-КВО» состоит из трех 32-метровых антенн и разнесен на расстояние 4,5 тыс км, на одной из его станций мне удалось однажды побывать.

Обычно сеть VLBA работает на приём астрофизических сигналов отдельно от Green Bank или Arecibo, а эти две обсерватории использовали другую технологию улучшения изображения - бистатическая визуализация. Похожую технологию используют авиационные или космические радары, зондирующие земную поверхность - SAR: Arecibo работал как гигантский радиопрожектор, «освещая» пролетавшие астероиды, Луну, Меркурий и спутники Юпитера, а стометровая антенна Green Bank принимала отраженные лучи. За счет разницы расположения между «освещающим» и принимающим телескопом качество картинки получалось лучше, чем если бы работал один одновременно и на излучение и на прием. Фактически тут действует тот же принцип, что и в интерферометрии - расстояние между двумя радиотелескопами определяют разрешающую способность как диаметр одного. В случае пары Arecibo-Green Bank - это 2,5 тыс. км, которые давали разрешение на Луне около 20 м, что в три раза лучше телескопа Hubble.

К сожалению, бистатический радар Arecibo-Green Bank дальше Юпитера не добивал, т.к. вращение Земли уводило из «прицела» Arecibo далекие тела пока туда летел сигнал. Но и этого хватало более чем. Главным открытием этой технологии стало открытие водяного льда на Меркурии.



И «закрытие» льда на Луне.



Также Arecibo много работал в наблюдении пролетающих околоземных астероидов.



А потом он разрушился.

К счастью, ученые «подстелили соломку» и смогли установить мощный передатчик на стометровый Green Bank. Теперь он будет «прожектором», и за счет своей поворотной системы и большей мощности передатчика сможет добивать не только до Юпитера, но и до Урана и Нептуна. Принимать же данные будет наземная сеть VLBA.

Новая система Green Bank-VLBA провела первые испытания и телескопы обратили взор к месту посадки Apollo 15 в лунных Аппенинах. Разрешение этой панорамы около 5 м на пиксель.



Разрешающая способность нового снимка примерно в четыре раза превосходит лунную съемку прежней пары Arecibo-Green Bank.

Авторы съемки не уточнили удалось ли им увидеть какие-либо следы пребывания человека в рассмотренной местности, поэтому пришлось самому сравнить результаты радарной съемки и спутниковой.



Первое, что бросается в глаза - светлые пятна радарного снимка не всегда совпадают с оптическим. Это логично, т.к. яркое отражение в радиолучах дают дробленые камни, т.е. эти пятна - следы разбросанной породы вокруг молодых метеоритных кратеров. А вот ни тропинки, вытоптанные астронавтами, ни оставшаяся ступень лунного модуля в радиодиапазоне не видны. В разрешении 5 м, модуль должен занимать два пикселя, и если бы он обладал более ярким отражением радиоволн, то был бы виден.

Судя по всему, панели экранно-вакуумной теплоизоляции и противометеоритной защиты такой же хороший поглотитель и рассеиватель радиолучей, что и окружающий реголит. Хотя возможно и другое объяснение - алгоритм обработки данных мог «съесть» два ярких пикселя, решив, что это просто шум.

Для сравнения, в видимом диапазоне, на снимках пятиметрового разрешения от японского аппарата Kaguya темное пятно на месте лунного модуля видно благодаря контрасту с окружающим грунтом. Можно даже рассмотреть отрезок наиболее вытоптанного грунта в северо-западном направлении от места прилунения.



Ранее в эту же долину заглядывал и космический телескоп Hubble. Но у него разрешение всего 60 м, потому сумел рассмотреть лишь смутные признаки посадки - чуть более светлое «гало» разогнанной ракетными двигателями пыли.



Самые качественные, на сегодня, спутниковые снимки места посадки Apollo 15 доступны благодаря американскому аппарату LRO. Тут уже видны и тропинки, и следы ровера, и сам ровер, и оставленное оборудование, и мусор. Разрешение этого кадра в десять раз лучше японского - 0,5 м.



При увеличении мощности передатчика на телескопе Green Bank, возможно, качество лунных панорам ещё возрастет, хотя вряд ли они снова будут смотреть на Apollo. В Солнечной системе много других целей, интересных астрофизикам и планетологам.

С радиотелескопами и местами посадок американцев на Луну известен другой курьез. В конце 70-х гг в Советском Союзе построили большой наземный радиотелескоп РАТАН-600. Для испытания астрономы направили его на Луну, и с удивлением обнаружили пять ярких источников радиоизлучения на поверхности. Оказалось, что это шли телеметрические данные с блоков приборов ALSEP, которые оставили американские астронавты. Они питались от радиоизотопных термоэлектрических генераторов и могли проработать ещё десятилетия. Но ученые NASA к тому времени уже утратили интерес к Луне, и погасили ALSEP вскоре после обнаружения советскими радиоастрономами.

Zelenyikot

Поддержать мою работу в популяризации космонавтики вы можете с помощью сервиса «Спонср». Эта поддержка очень важна для возможности продолжать рассказывать о важных и интересных событиях в космосе

астрофизика, конспирология, Радиоастрон, apollo, Луна

Previous post Next post
Up