Представим себе поверхность и сидящего на ней муравья. Удастся ли муравью доползти до обратной стороны поверхности - образно говоря, до её изнанки, - не перелезая через край? Конечно же нет!
Август Фердинанд Мёбиус (1790-1868)
Первый пример односторонней поверхности, в любое место которой может доползти муравей, не перелезая через край, привел Мёбиус в 1858г.
Лента Мебиуса, которую также называют петлей, поверхностью или листом, - это объект изучения такой математической дисциплины, как топология, исследующей общие свойства фигур, сохраняющихся при таких непрерывных преобразованиях, как скручивание, растяжение, сжатие, изгибание и других, не связанных с нарушением целостности. Удивительной и неповторимой особенностью такой ленты является то, что он имеет всего одну сторону и край и никак не связаны с ее расположением в пространстве. Лист Мебиуса является топологическим, то есть непрерывным объектом с простейшей односторонней поверхностью с границей в обычном Евклидовом пространстве (3-мерном), где возможно из одной точки такой поверхности, не пересекая края, попасть в любую другую.
Август Фердинанд Мёбиус (1790-1868) - ученик «короля» математиков Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX века.
В возрасте 68 лет Мёбиусу удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мёбиуса (или лента). Мёбиус придумал ленту, когда наблюдал за горничной, неправильно одевшей на шею свой платок.
В Евклидовом пространстве, фактически, существует два типа ленты Мебиуса, развернутой вполоборота: одна - развернутая по часовой стрелке, другая - против часовой стрелки.
Ленте Мебиуса присущи следующие свойства, не меняющиеся при ее сжимании, разрезании вдоль или сминании:
1. Наличие одной стороны. А. Мебиус в своем труде «Об объеме многогранников» описал геометрическую поверхность, названную затем в его честь, обладающую всего одной стороной. Проверить это довольно просто: берем ленту или лист Мебиуса и стараемся закрасить внутреннюю сторону одним цветом, а внешнюю - другим. Не суть важно, в каком месте и направлении было начато окрашивание, вся фигура будет закрашена одним цветом.
2. Непрерывность выражается в том, что любую точку этой геометрической фигуры можно соединить с любой другой ее точкой, не пересекая границы поверхности Мебиуса.
3. Связность, или двухмерность, заключается в том, что при разрезании ленты вдоль, из нее не получится несколько разных фигур, и она остается цельной.
4. В ней отсутствует такое важное свойство, как ориентированность. Это значит, что человек, идущий по этой фигуре, вернется к началу своего пути, но только в зеркальном отражении самого себя. Таким образом, бесконечная лента Мебиуса может привести к вечному путешествию.
5. Особый хроматический номер, показывающий, какое максимально возможное число областей на поверхности Мебиуса, можно создать так, чтобы у любой из них была общая граница со всеми другими. Лента Мебиуса имеет хроматический номер - 6, а вот кольцо из бумаги - 5.
Сегодня лист Мебиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств. Так, существует гипотеза, согласно которой Вселенная - это огромнейшая петля Мебиуса. Косвенно об этом свидетельствует и теория относительности Эйнштейна, согласно которой даже полетевший прямо корабль может вернуться в ту же временную и пространственную точку, откуда стартовал.
Другая теория рассматривает ДНК как часть поверхности Мебиуса, что объясняет сложности с прочтением и расшифровкой генетического кода. Кроме всего прочего, такая структура дает логичное объяснение биологической смерти - замкнутая на самой себе спираль приводит к самоуничтожению объекта. По мнению физиков, многие оптические законы основываются на свойствах листа Мебиуса. Так, например, зеркальное отражение - это особый перенос во времени и человек видит перед собой своего зеркального двойника.
Если вас заинтересовала лента Мебиуса, как сделать ее модель, вам подскажет небольшая инструкция:
1. Для изготовления ее модели потребуются: - лист обычной бумаги;
- ножницы;
- линейка.
2. Отрезаем полосу от листа бумаги так, чтобы ее ширина была в 5-6 раз меньше длины.
3. Полученную бумажную полоску раскладываем на ровной поверхности. Один конец придерживаем рукой, а другой поворачиваем на 180* так, чтобы полоса перекрутилась и изнанка стала лицевой стороной.
4. Склеиваем концы перекрученной полосы так, как показано на рисунке.
Лента Мебиуса готова.
5. Возьмите ручку или маркер и посередине ленты начните рисовать дорожку. Если вы сделали все правильно, то вернетесь в ту же точку, откуда начали чертить линию.
Для того чтобы получить наглядное подтверждение тому, что лента Мебиуса - односторонний объект, карандашом или ручкой попробуйте закрасить какую-либо ее сторону. Через некоторое время вы увидите, что закрасили ее полностью.
Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных - «Лист Мёбиуса II», показывает муравьёв, ползающих по поверхности ленты Мёбиуса.
Лист Мёбиуса является эмблемой серии научно-популярных книг серии «Библиотечка „Квант“». Он также постоянно встречается в научной фантастике, например, в рассказе Артура Кларка «Стена темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщённым листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (например, «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе М. Клифтона «На ленте Мёбиуса».
Лента Мёбиуса используется как способ перемещения в пространстве и времени Гарри Кифа, главного героя романа Брайана Ламли «Некроскоп».
Лента Мёбиуса играет важную роль в фантастическом романе Р. Желязны «Двери в песке».
В книге Е. Наумова «Полураспад» (1989 год) интеллигент-алкоголик путешествует по стране, становясь на ленту Мёбиуса.
С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея Шепелёва «Echo». Из аннотации к книге: «„Echo“ - литературная аналогия кольца Мёбиуса: две сюжетные линии - „мальчиков“ и „девочек“ - переплетаются, перетекают друг в друга, но не пересекаются».
Лента Мёбиуса также встречается в эссе Харуки Мураками «Облади Облада» из книги-сборника «Радио Мураками», выпущенного в 2010 году, где лента Мёбиуса образно сравнивается с бесконечностью.
В визуальной новелле CHARON "Makoto Mobius" главный герой Ватаро пытается спасти одноклассницу от смерти, используя магический артефакт - ленту Мёбиуса.
В 1987 году советский джазовый пианист Леонид Чижик записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.
Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.
Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера, выполненная в виде ленты Мёбиуса, будет работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид ленты Мёбиуса для увеличения её ресурса.
Также над входом в институт ЦЭМИ РАН находится мозаичный горельеф «Лента Мёбиуса» работы архитектора Леонида Павлова в соавторстве с художниками Э. А. Жареновой и В. К. Васильцовым (1976)
Архитетурные решения с использованием идеи ленты Мебиуса:
Ювелирные украшения в виде ленты Мёбиуса:
Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.
Устройство под названием резистор Мёбиуса - это недавно изобретённый электронный элемент, который не имеет собственной индуктивности. Еще применяются ленты Мёбиуса в системах записи на непрерывную плёнку (чтобы удвоить время записи), в матричных принтерах красящая лента также имела вид листа Мёбиуса для увеличения срока годности.
Источники:
https://ru.wikipedia.org/wiki/%D0%9B%D0%B5%D0%BD%D1%82%D0%B0_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0https://www.syl.ru/article/172135/new_chto-takoe-lenta-mebiusa-lenta-mebiusa---zagadka-sovremennosti#image661997http://www.liveinternet.ru/users/s200170/post167848652===>
Лента Мёбиуса и знак бесконечности