Ещё раз о бароне Мюнхгаузене. Теория вероятности против лжи НАСА

Sep 05, 2021 07:02



4 .2.2. Выход на околоземную орбиту.

Могла ли состояться экспедиция на Луну, если бы во время выхода на околоземную орбиту произошла авария, взрыв, разрушение ракеты или полезного груза; или любая из трёх ступеней не смогла бы отработать необходимое количество импульса для придания полезному грузу первой космической скорости?



Я прошу заметить, что вероятность успешного вывода полезного груза на околоземную орбиту с помощью трёхступенчатой ракеты «Сатурн-5» вычисляется следующим образом:

- вероятность успешной отработки первой ступени всеми пятью двигателями F-1

- И безаварийного её отделения

- И успешного включения всех пяти двигателей J-2 второй ступени

- И успешной отработки второй ступени всеми пятью двигателями J-2

- И безаварийного отделения второй ступени

- И успешного включения двигателя J-2 третьей ступени

- И успешной отработки необходимой части топлива третьей ступенью

- И безаварийного отключения двигателя третьей ступени.

Очевидно, что доводка нового ракетоносителя в 60-70-х годах являла собой довольно длинный, сложный, дорогой, а подчас и трагичный процесс; тем более, если речь идёт не только о принципиально новой технике, но скорее об уникальной ракете, технические характеристики которой невозможно повторить даже спустя 45 лет!



Для тех, кто интересуется техническими подробностями и историей ракеты-носителя «Сатурн-5», сама постановка вопроса о выводе с её помощью на околоземную орбиту полезного груза будет выглядеть абсурдом. Ранее в этой работе мы уже частично разбирали этот вопрос и упоминали соответствующие исследования авторитетных специалистов.

Как же оценить вероятность успешной работы системы, которой в принципе не существовало в заявленных НАСА параметрах?

Здесь, как сказал один очень известный товарищ, мы пойдём другим путём… А именно, давайте представим себе, что такой ракетоноситель существовал, и, более того, функционировал на стадии вывода полезного груза на околоземную орбиту именно с таким уровнем надёжности, как утверждает НАСА!
В таком случае обвинить меня в предвзятости просто невозможно.

Итак, два тестовых испытания - первые два запуска этой ракеты в 1968 и 1969 году в беспилотных вариантах - завершились по версии НАСА «удачно» лишь в смысле отработки неких отдельных систем. Но в целом программа вывода полезного груза на планируемую орбиту ни в первом, ни во втором случае выполнена не была.

После этого, как я уже отмечал, у ракеты «Сатурн-5» пошёл «счастливый период», когда все пуски (согласно официальным данным) с выводом на околоземную орбиту полезной нагрузки (в виде космических кораблей «Аполлон» с живыми астронавтами) общей массой порядка 140 тонн происходили исключительно успешно.

Это были запуски следующих «Аполлонов»: 8, 10, 11, 12, 13, 14, 15, 16 и 17. Давайте ещё присовокупим сюда запуск «Скайлэба», хотя даже по данным НАСА его масса якобы составляла 70, а не 140 тонн. Но мы не будем мелочиться…

Итак, всего за официальную историю эксплуатации «Сатурнов-5» имеем 12 запусков, из которых 2 - неудачные. Это означает, что часть неудач составляет 2/12, а успехов - соответственно 10/12 или 0,8(3). Таким образом, официальное (от НАСА) значение надёжности эксплуатации «Сатурна-5» как ракетоносителя для вывода полезного груза на околоземную орбиту составляет немногим более 83%.

4.2.3. Полёт на опорной околоземной орбите.

Давайте представим себе, что ракета «Сатурн-5» вывела на низкую круговую околоземную орбиту связку командного и лунного модуля «Аполлона» и своей третьей ступени общей массой 140 тонн, сообщив этой связке первую космическую скорость - 7,9 км/сек.

Возможно ли продолжение экспедиции, если с данным комплексом на околоземной орбите произойдёт какая-либо авария?

Что за вопрос? - скажете вы, - ведь работали же на околоземной орбите различные орбитальные станции, в которых по многу лет сменяли друг друга экспедиции посещения, и ничего с ними критического не происходило!

Это верно, однако, не для рассматриваемого нами случая. Ведь рассматриваемый полезный груз имел в своём составе такую «бомбу» замедленного действия, о которой следует рассказать отдельно.

Но перед этим необходимо обязательно вспомнить сложнейшую проблему первых космических аппаратов, забрасываемых в космос СССР и США, - это склонность к беспорядочному вращению.

Если пилотируемый космический корабль или автоматический спутник начинал по тем или иным причинам вращение в некоторых плоскостях в невесомости, это было чревато его потерей.

Причины, заставлявшие спутник беспорядочно вращаться на орбите, могли быть самыми разнообразными: это и остаточное влияние импульса последней разгонной ступени вследствие расстыковки, и непроизвольное истечение газов из резервуаров с горючим или из двигателей ориентации, и неправильные включения этих двигателей, рассчитанное на расположение центра масс аппарата в одном месте, в то время как он находился в другом, и неравномерный нагрев корпуса, и так далее, и тому подобное.

Известно, что в СССР проблему компенсации вращения космических кораблей решили с помощью гироскопов, когда микродвигатели ориентации управлялись по алгоритмам, получающим данные от этих гироскопов.

В США поначалу такая проблема решалась ещё проще - производилась закрутка космического аппарата вдоль продольной оси движения с помощью двигателей последней ступени ракеты-носителя.

Если для беспилотных спутников такое «решение» поначалу имело право на существование, то чем компенсировались эффекты вращения в «Меркуриях», «Джемини» и «Аполлонах», совершенно непонятно. История американской космонавтики об этом деликатно умалчивает. Они как-то об этом не задумывались, впрочем, как и о многом другом…

Теоретически небольшой пилотируемый корабль на орбите Земли можно стабилизировать с помощью двигателей ориентации. Но это возможно лишь в том случае, если масса этого корабля сопоставима с мощностью этих двигателей, которые имеют к тому же достаточный запас топлива для выполнения такой работы.

Теперь, внимание, вопрос: какими двигателями ориентации можно остановить вращение рассматриваемого комплекса, если его масса согласно официальным данным НАСА составляет 140 тонн?

Да, я помню о том, что на поверхности командного модуля «Аполлона» и возвращаемого модуля с поверхности Луны американские конструкторы натыкали более чем два десятка микродвигателей ориентации.

Но, во-первых, эти двигатели предназначены для разворотов и перестыковок микроскопически маленьких модулей.

Во-вторых, всё это хозяйство пока упрятано под обтекатель третьей ступени «Сатурна-5», который по легенде должен отделиться лишь по пути к Луне в процессе перестроения отсеков. Но мы пока продолжаем полёт и предположительно вращаемся на околоземной орбите. Чем будем гасить это вращение? Маршевым двигателем третьей ступени, что ли? Ведь для выполнения манёвра разгона к Луне надо занять точно выверенную позицию по направлению, и любое вращение обязательно необходимо прекратить.

И теперь об обещанной «бомбе».

У американских конструкторов, которые пытались создать сверхмощную ракету «Сатурн-5», было одно существенное ограничение, навязанное непонятно кем и для чего - однопусковая схема полёта к Луне.

Другими словами, всё хозяйство должно было стартовать в одной ракете, за один раз, одним пуском. Минимальная полезная масса комплекса на опорной околоземной орбите, необходимая для выполнения всей остальной миссии, как уже было сказано, должна быть не менее 140 тонн.

Соответственно, теоретические расчёты показывали, что трёхступенчатая ракета на старте должна была весить не менее 3000 тонн, а после отработки и отделения первой ступени на скорости 2.68 км/с - не менее 500 тонн.

Чем разогнать массу 500 тонн от 2.68 до 6.8 км/с с помощью второй ступени? Какими двигателями? Для того, чтобы это осуществить, необходимо было иметь компактные и мощные двигатели с тягой минимум по 100 тс, которые должны были обеспечивать необходимый удельный импульс.

Теоретически максимально возможный выход энергии получается в результате горения водорода в кислороде. Поэтому не оставалось ничего другого, как попытаться сделать такой двигатель.

НАСА заявляет о создании двигателя J-2, работающего на реакции горения водорода в кислороде, где оба компонента находятся в сжиженном состоянии для достижения компактности запаса топлива и достаточности его количества.

Пять таких двигателей якобы составляли маршевую связку второй ступени «Сатурна-5», и один J-2 - последней, третьей ступени. Единственный 100-тонник J-2 третьей ступени, по официальным данным НАСА, сжигая часть топлива, разгонял остатки комплекса с 6.8 до 7.9 км/с, выводя его на низкую круговую орбиту вокруг Земли.

История создания двигателя J-2 - сплошная череда неудач и взрывов, как на земле, так и в космосе. До начала «счастливого периода», ознаменовавшегося полётом «Аполлона-8» с тремя астронавтами сразу к Луне, ни один тестовый запуск J-2 не был завершен успешно!

При рассмотрении следующих этапов экспедиции мы ещё вернёмся к некоторым техническим аспектам работы этого уникального во всех смыслах двигателя.

А сейчас лишь отмечу один важнейший фактор, который существенным образом влияет на полёт на околоземной орбите. Дело в том, что согласно официальным техническим характеристикам всего за один час полёта в вакууме третья ступень «Сатурна-5» теряла целых 1,2 тонны топлива вследствие испарения криогенных топливных компонентов.

Соответственно, за один полный виток вокруг Земли масса третьей ступени уменьшалась почти на две тонны!

Что это означает…

Во-первых, интенсивная потеря такого огромного количества сжиженного газа говорит о том, что космический корабль обязательно будет вращаться. Сжиженный газ под влиянием нагрева корпуса корабля от солнечных лучей испаряется сквозь стенки баков и специальные клапаны для стравливания в вакууме несколько интенсивнее, чем на стартовом столе в условиях атмосферного давления.

В результате создается нескомпенсированная реактивная тяга, которая приводит к вращению корабля в невесомости.

Очевидно, что водород испаряется интенсивнее, чем кислород. Водород проникает сквозь стенки баков и в сжиженном состоянии находится при гораздо большем перепаде температур с этими стенками (нагреваемыми Солнцем), чем у кислорода (-253°С против -183°С). Логично предположить, что водорода теряется приблизительно вдвое больше за единицу времени, чем кислорода.

Если бы дело происходило при атмосферном давлении, объём газа, покидающего данный космический корабль в разных направлениях, составлял бы 9955 литров в секунду для водорода и 79644 литров в секунду для кислорода.

Таким образом, данный корабль получает боковую и закручивающую реактивную тягу от газов, объём которых составляет не менее 90 тысяч литров в секунду! При этом никто не может сказать, в каком именно месте и через какие именно щели в корпусе ракеты эти газы найдут себе выход в космический вакуум. Рассчитать вращающий момент на весь комплекс при этом практически невозможно.

Во-вторых, испарение 1,2 тонны сжиженного газа при т.н. нормальных условиях (на уровне моря при температуре 20°С) эквивалентно образованию объёма газообразной смеси высотой 100 метров и площадью приблизительно в 17 футбольных полей. И это только за один час!

В вакууме этот объём будет значительно большим, и весь этот испарившийся водород и кислород будет создавать постоянно расширяющееся облако газов, которое будет перемещаться вместе с кораблём со скоростью почти 8 км/с.

Из школьного курса неорганической химии известно, что смешивание двух объёмов газообразного водорода и одного объёма кислорода называется гремучим газом. Эта смесь имеет свойство взрываться даже спонтанно, т.е. без видимого повода.

В данном случае повод для такого взрыва имеется более чем достаточный, ведь приповерхностный слой (у корпуса ракеты) данной газовой смеси разогревается очень интенсивно за счёт солнечного света. НАСА имело возможность в этом убедиться на собственном горьком опыте: первый раз 5 июля 1966 года при запуске ракеты «Сатурн-1Б», когда изделие SA-203 (позже декларируемое как третья ступень легендарной ракеты «Сатурн-5») взорвалось на околоземной орбите на седьмом витке, разлетевшись на 37 фрагментов; и второй раз - при неудачном испытании ракеты «Сатурн-5».

Целью упомянутого полёта «Сатурна-1Б», как указывает НАСА, было «изучение поведения жидкого водорода в невесомости». Видимо, жидкому водороду (а заодно и кислороду, который, кстати, не был полностью израсходован) пришлось за поведение поставить «неуд».

Ведь толстые стальные стенки для жидкого водорода и кислорода в космосе сделать нельзя - ограничение по массе. Видимо, именно после этих феерических экспериментов местным умникам стало совершенно ясно, что криогенным компонентам при длительных полётах в космосе не место.

Вскоре, как мы уже знаем, последовало увольнение главного конструктора - экс-штурмбанфюрера Вернера фон Брауна и восьми сотен его ближайших соратников по нелёгкому космическому труду, после чего сразу наступил «счастливый период» полётов на Луну…

Наконец, в-третьих, интенсивное испарение топлива и вынужденное стравливание окислителя при такой схеме полёта накладывает очень существенные ограничения на время пребывания третьей ступени «Сатурна-5» на околоземной орбите.

Если после выхода на околоземную орбиту срочно не улететь к Луне, тогда немного позже уже может банально не хватить топлива! Именно поэтому идеологам-режиссёрам «покорения Луны» из НАСА пришлось откладывать критически важные этапы перестыковок командного модуля на время следования к Луне, поскольку сделать это на околоземной орбите, к тому же сидя верхом на своеобразной пороховой бочке с тысячей горящих фитилей, попросту не было времени.

А теневые сотрудники НАСА на форумах сказать об этом не имеют права - однопусковая схема полёта к Луне на кислородно-водородных двигателях загнала их в глухой угол технического абсурда.

Необходимо особо обратить внимание на то, что ни до, ни после «пилотируемых» экспедиций НАСА «к Луне» никогда и ни при каких обстоятельствах баки со сжиженным водородом в качестве ракетного топлива в космосе не использовались. Они используются только в процессе вывода полезного груза на орбиту, когда вероятно образующаяся гремучая смесь сносится набегающим потоком воздуха, а выше - за счёт инерции с корпуса ускоряющейся ракеты.

Однако, мы немного отвлеклись. Нам нужно оценить вероятность безаварийного пребывания 140-тонного комплекса, готового отправиться к Луне, на околоземной орбите на протяжении максимум трёх витков - именно столько отводит НАСА своим астронавтам для проверки всех систем и подготовки манёвра разгона к Луне в разных экспедициях.

Как я ранее обещал, мы при каждом удобном случае будем завышать надёжность в пользу НАСА, поэтому - в том числе и для простоты - вероятностями возникновения всевозможных поломок на борту комплекса при «проверке всех систем» и при подготовке к выполнению манёвра разгона к Луне мы просто пренебрегаем.

Для нашей задачи, по моему мнению, нам вполне хватит официальной статистики эксплуатации двигателя J-2, а также второй и третьей ступеней «Сатурна-5» с этим же двигателем в космических полётах, когда они находились либо на околоземной орбите, либо, как любит выражаться НАСА, «в суборбитальных полётах».

Итак, до начала «счастливого периода», т.е. полёта «Аполлона-8» с экипажем прямо к Луне, у нас имеется всего 4 (четыре!) запуска S-IVB с двигателями J-2… скажем так, по направлению в космос: два раза на ракете «Сатурн-1Б» и дважды - с помощью «Сатурн-5».

Как мы уже знаем, после вывода на околоземную орбиту ракетой «Сатурн-1Б» изделие SA-203 вдруг взорвалось на околоземной орбите на седьмом витке. И, кроме того, после неудачного запуска «Сатурна-5» 4 апреля 1968 года, третья ступень, которая после неудачной попытки повторного запуска двигателя J-2 отделилась от макета лунного корабля, вдруг взорвалась 7 апреля.

Почему произошли эти взрывы, мы уже разбирали. Теперь давайте займёмся статистикой.

Кроме этих четырёх замечательных тестовых полётов, два из которых окончились взрывом третьей ступени «Сатурна-5» на околоземной орбите, а два других - разрушением третьей ступени c погружением её в воды мировых океанов, у нас имеются следующие легендарные и безаварийные (на данном этапе) пилотируемые полёты в космос - на «Аполлонах-» 8, 10, 11, 12, 13, 14, 15, 16 и 17.

Путём несложных подсчётов получаем, что надёжность третьей ступени «Сатурна-5» в полёте на околоземной орбите согласно официальных данных НАСА (!) составляет 11/13 = 0,84615… или немногим менее 85%.

4.2.4. Выполнение манёвра разгона к Луне.

Возможен ли полёт к Луне, если манёвр разгона с околоземной орбиты не удастся?

Во-первых, давайте ещё раз вспомним о том, что согласно официальным данным НАСА в полёте на околоземной орбите каждый час с баков третьей ступени «Сатурна-5» испарялось 1,2 тонны водорода и кислорода.

Если космический корабль движется с первой космической скоростью, тогда один виток вокруг Земли на низкой круговой орбите происходит приблизительно за 90 минут, т.е. полтора часа. Всего перед началом выполнения манёвра разгона к Луне по легенде НАСА наш комплекс делал три витка.

Соответственно, за это время с его баков успевало испариться приблизительно 5,4 тонны водорода и кислорода. И всё это многокилометровое облако газов, находящееся вокруг корабля, должно двигаться вместе с ним по орбите, так как в вакууме лобовое сопротивление среды отсутствует.

Теперь представьте включение маршевого двигателя - 100-тонника J-2 - внутри огромного облака гремучего газа…

Процессы, вероятно происходящие в таких условиях, возможно когда-нибудь будут промоделированы на вычислительной технике, но в первом приближении мне представляется, что следствием детонации своеобразного гигантского заряда объёмного взрыва обязательно будет полное разрушение баков со сжиженным водородом и кислородом, которых к этому моменту осталось ещё не менее 85 тонн только в баках третьей ступени «Сатурна-5».

В вакууме на Солнышке эти жидкости практически моментально превратятся в газообразное состояние, образуя ещё более грандиозное облако гремучего газа в космосе, взрыв которого вообще трудно вообразить…

Американские военные, которые в начале 60-х годов занимались ядерными испытаниями в стратосфере, удавились бы от зависти…

Но давайте для дальнейшего анализа представим, будто гремучий газ засмотрелся на красоты космоса и забыл взорваться от воздействия на него пламенем маршевого двигателя J-2.

Во-вторых, как уже ранее было сказано, 140-тонный космический комплекс на околоземной орбите не имел достаточно мощных двигателей ориентации, с помощью которых можно было бы остановить вращение и выставить его в точное положение для начала выполнения разгонного импульса.

Если не удаётся сориентировать и стабилизировать корабль в заданном направлении, включать маршевый двигатель не имеет смысла - в Луну он не попадёт.

В-третьих, повторное включение маршевого двигателя третьей ступени должно произойти в точно рассчитанный момент, не раньше и не позже. Если включение двигателя произойдёт не вовремя, траекторию полёта к Луне как минимум придётся существенно подправлять.

А это не только означает использование дополнительного топлива, которого может банально не хватить для вывода комплекса на расчётную трассу полёта к Луне. Это также означает, что нужно будет включать двигатель третий раз, и возможно ещё и ещё…

Почему я акцентирую внимание на повторных включениях маршевого двигателя ступени S-IVB? Да потому, что во всех четырёх неудачных испытательных полётах этого аппарата включить повторно двигатель J-2 в космосе не удалось ни разу!

Почему это произошло.

Сжиженное водородное топливо для ракет, кроме вышеупомянутых неудобств, имеет также свойство постоянно кипеть в приграничном слое внутренних ёмкостей баков, поскольку баки на Земле нагреваются от атмосферного воздуха, а в космосе - от Солнца.

Если на стартовом столе под действием силы тяжести, а также в процессе разгона ракеты под действием сил тяжести и инерции газообразный водород сразу вытесняется к верхней части бака, а жидкий - в основном находится в нижней части, откуда он поступает в насосы, то в невесомости при орбитальном полёте жидкий водород находится строго в центральной части бака, а со всех сторон под огромным давлением накопляется газообразный водород.

Насосы ракетных двигателей, работающих на сжигании топлива с криогенными компонентами, рассчитаны на работу с жидкостями, пусть даже переохлаждёнными, но никак не с газами. Таким образом, насыщения горючей смеси перед камерой сгорания до необходимого уровня давления достичь не удавалось, поэтому водородно-кислородный двигатель в космосе у них и не запускался.

Понятно, что баронов Мюнхгаузенов из НАСА это не остановило, поэтому они просто взяли и полетели на «Аполлоне-8» сразу к Луне…

Кстати, задачка взять жидкость для насоса при температуре -253°С именно из центра бака в момент запуска двигателя довольно нетривиальна; к моменту написания этой работы в лунных чертежах НАСА ничего предназначенного для этой цели не было.

Любая вытеснительная система, работающая на инертных газах, в невесомости тоже неприменима, ибо разные газы будут просто перемешиваться, невзирая на разницу в плотности. Но я уверен, что после прочтения этой работы в НАСА обязательно что-нибудь придумают и внесут в документацию по «Сатурну-5» соответствующие правки.

Наконец, в-четвёртых, манёвр разгона к Луне можно считать удачным только в том случае, если двигатель J-2 отработает положенное время на номинальной тяге. Если любое из этих двух необходимых условий не выполняется, говорить о полёте к Луне не приходится.

Результатом работы маршевого двигателя на этом этапе согласно легенде НАСА было приращение скорости от 7,9 до 11,8 км/с и превращение орбиты из эллиптической в параболическую. При этом двигатель J-2 должен был израсходовать 85 тонн жидкого водорода и кислорода.

Это я говорю к тому, что никогда - ни до, ни после - такой массивный космический корабль (140-55 тонн) от первой до второй космической скорости с помощью одного ракетного двигателя никто не разгонял…

Итак, нам нужно оценить максимальную вероятность успешного выполнения манёвра разгона к Луне с помощью рассматриваемой технической системы. Как мы уже договаривались, некоторые моменты - даже если они делают невозможным выполнение рассматриваемого этапа в принципе - мы будем игнорировать в пользу НАСА.

В данном случае, мы допускаем, что гремучий газ засмотрелся на девушек и забыл взорваться при включении маршевого двигателя, а также, что каким-то таинственным образом 140-тонная связка третьей ступени «Сатурна-5» и всех частей «Аполлона» была точно сориентирована и стабилизирована по направлению на момент начала выполнения разгонного импульса.

Другими словами, пусть вероятность любых технических проблем в данный момент равна нулю, а надёжность - единице.

Рассмотрим лишь два основных фактора, которые самым очевидным образом влияют на успех данного этапа: повторное включение двигателя J-2 и выдача этим двигателем точно предвычисленного количества удельного импульса в заданном направлении. Для этого я опять призову на помощь официальные данные НАСА, дабы не быть обвинённым в предвзятости.

Повторное включение двигателя J-2 в невесомости четырежды не удалось, а потом (когда «на Луну летели» пилотируемые корабли) девять раз удалось. Всего имеем 13 событий, из которых 9 - удачные. Соответственно, общая надёжность данной технической системы при выполнении повторного включения двигателя J-2 составляет 9/13 = 0,69230…

Кроме этого, двигатель J-2 после своего повторного включения должен был отработать положенное количество импульса. Как будет работать этот двигатель в невесомости при повторном включении, до «счастливого периода полётов на Луну» оценить так и не удалось.

Соответственно, чтобы не обидеть сторонников НАСА, давайте примем надёжность на уровне 99%, что примерно соответствует надёжности работы в космосе двигателей «Союзов» и «Протонов», развивавшихся и совершенствовавшихся 40 лет.

Итого, максимальная надежность рассматриваемого этапа у нас получается 0,6923 х 0,99 = 0,6854 или немногим более 68%.

Я прошу заметить, что мы берём для расчётов всю пилотируемую программу «Аполлонов», вернее её официальные результаты. А представьте себе, как выглядели бы эти показатели надёжности перед «первым облётом Луны» на «Аполлоне-8»! Вы пустили бы живых людей в такой полёт?…

Но не будем отвлекаться, ведь у нас впереди ещё большая часть программы экспедиции.

Отстоя.NET

***
Источник.

НАВЕРХ.

Луна, фальсификация, космос, ложь, американцы, теория, логика, технологии, НАСА, советский, США

Previous post Next post
Up