The question actually comes from the allegation that CPS is isomorphic to "direct" expression. I cannot recall where I saw this allegation, so was looking for a confirmation.
Then if they are not isomorphic, it means one of the ways is "more expressive"?
да, я забыл, это же fast and loose reasoning, а не полная правда.
А как Йонеда в Set выглядит? Вот у нас есть Hom(A,-), тогда Hom(A,⊥) - пустое множество для непустых A. Не наврал? И вот множество стрелок из пустого множества (естественные преобразования) изоморфно множеству, отображающему A?..
Comments 12
It's about natural transformations from (a->_) to id, in Sets, and they are in one-to-one correspondence with the set a.
Hask is not Sets. Again, Hask is not Sets. I don't know where Bartosz takes all this, to me he seems over-creative.
So - never mind. He's just fantasizing.
Reply
The question actually comes from the allegation that CPS is isomorphic to "direct" expression. I cannot recall where I saw this allegation, so was looking for a confirmation.
Then if they are not isomorphic, it means one of the ways is "more expressive"?
Reply
Reply
Reply
Wadler says yes. His free theorems guarantee...
Reply
Reply
no. it means that expression of cps with a quantifier is a good approximation for Yoneda.
Reply
А как Йонеда в Set выглядит? Вот у нас есть Hom(A,-), тогда Hom(A,⊥) - пустое множество для непустых A. Не наврал? И вот множество стрелок из пустого множества (естественные преобразования) изоморфно множеству, отображающему A?..
Reply
Leave a comment