/Очень интересный материал - мнение Константина Феоктистова о прошлом, настоящем и будущем космонавтики, опубликованное им в далеком 1991 году. Можно сравнить, как это все виделось тогда и как это выглядит сейчас, что предлагалось и прогнозировалось и что в итоге получилось./
---------------------------------
Константин Феоктистов: космонавтика без фанфар и амбиций. Часть 3. (
Часть 2,
Часть 1)
7. ОРБИТАЛЬНЫЕ ЗАВОДЫ
Автоматические заводы на орбите видятся перспективным и возможным делом. Невесомость и вакуум могут выгодно использоваться для производства сверхчистых препаратов и материалов, нужных в современной медицине и промышленности. Конечно, абсолютной невесомости на орбитальных аппаратах быть не может - она достигается только в центре масс КА.
А в точках, удалённых от центра масс на метры, ускорения достигают миллионных долей ускорения силы тяжести на Земле. Тем более не является абсолютным вакуум на орбитах с высотой порядка 500 км.
Но всё же и ускорения микрогравитации, и давление окружающей атмосферы на этих высотах довольно малы, что создаёт неплохие условия для некоторых видов производства.
Малые ускорения микрогравитации позволяют исключить из процессов сепарации и кристаллизации влияние конвекции разделения элементов в смеси под действием силы тяжести и резко снизить число дефектов, образующихся при кристаллизации.
Экспериментальные работы на орбитальных станциях, пилотируемых и автоматических КА по исследованию эффективности различных технологических процессов свидетельствуют об улучшении качества процессов в условиях невесомости. Но пока мы не вышли на уровень, позволяющий сделать определённые выводы и приступить к проектированию орбитальных заводов.
Сегодня представляются перспективными проекты, связанные с техпроцессами по очистке биологических препаратов на всякого рода электрофоретических установках для фармацевтической промышленности, по выращиванию кристаллов материалов, используемых в электронной промышленности, по увеличению чистоты и относительной массы выхода получаемого продукта, по производству оптического стекловолокна для волоконной оптики, которое в условиях орбиты может дать более качественную продукцию и оказаться более экономичным, чем на наземных установках.
Космический телескоп «Хаббл» после ремонта (фото NASA / Roger Ressmeyer / Corbis).
8. РАДИОТЕЛЕСКОПЫ
Радиотелескопы, выводимые на околоземные орбиты или, что ещё более эффективно, на орбиты спутников Солнца, могут быть одним из самых действенных средств исследования Вселенной.
При размерах приёмных антенн радиотелескопов порядка сотен метров можно будет принимать сигналы от объектов, находящихся на окраинах Вселенной. Если вести наблюдение с помощью нескольких радиотелескопов, разнесённых на расстояния порядка диаметра солнечной орбиты, то, используя принцип интерферометрии, можно получить, как уже говорилось, совершенно фантастическую разрешающую способность порядка десятимиллионных долей угловой секунды.
Сами размеры приёмных антенн (порядка сотен метров) не должны смущать - задача создания конструкций таких размеров в условиях невесомости вполне под силу современной технике. Принципиальной проблемой окажется обеспечение точности поверхности антенны. Ведь нужно будет обеспечить точность порядка долей длины волны, на которой будут проводиться измерения.
Так, при наблюдениях на длине волны 20 см нужно обеспечить точность поверхности около сантиметров при километровых размерах конструкции! И при этом не допускать тепловых деформаций конструкции, превышающих эти же величины.
Проблему, по-видимому, придётся решать за счёт введения регулирующих элементов и лазерной измерительной системы.
Космическая станция (1955 г.) (иллюстрация Bettmann / Corbis).
9. СТАНЦИЯ-ОБЛАКО
Идея станции-облака проистекает из трудностей, что сопутствуют созданию и функционированию таких больших сооружений, как, например, разрабатывающаяся сейчас американская орбитальная станция «
Фридом». К этим трудностям можно отнести:
- громадные размеры ферменных конструкций, на которых размещены жилые помещения, заправочные станции, производственные помещения, телескопы, солнечные батареи и транспортные корабли, что приводит к огромным моментам инерции и сложностям в ориентации таких сооружений;
- избыточная запрограммированность конструкции подобных объектов, ограничивающая возможности их развития и совершенствования производственной и исследовательской программ;
- включение производственных помещений в единую конструкцию приводит к возрастанию уровня микрогравитации в этих помещениях, что, скорее всего, скажется на качестве получаемой продукции и потребует ограничений на процессы ориентации и управления движением и деятельность экипажа;
- для работы телескопов высокого класса требуется ориентация с точностью порядка сотых долей угловой секунды, что, вероятно, окажется невозможным в общей конструкции, даже если будет предусмотрена свобода угловых перемещений телескопов относительно конструкции станции;
- размещение в общей конструкции заправочных ёмкостей, содержащих обычно самовоспламеняющиеся компоненты, сложные пневмогидросхемы приёма топлива от кораблей-заправщиков и заправки абонентов следует считать небезопасным и нежелательным.
С другой стороны, всё это естественно разместить рядом, чтобы можно было производить настройку, ремонт, испытания и обслуживание всех этих телескопов, технологических лабораторий, заводов, заправочных станций.
Эти трудности и противоречия можно устранить за счёт использования схемы станции-облака. Представим себе станцию, состоящую из нескольких автономных частей - к примеру, базового жилого блока, астрофизической обсерватории, производственно-лабораторного модуля и заправочного блока. Все части летают по одной орбите, не слишком удаляясь друг от друга, с тем чтобы расстояние от базового блока до каждого из них всегда находилось в выбранных пределах (например, 10-100 км). Для этого на каждом объекте нужно иметь систему измерения дальности и радиальной скорости относительно базового блока и силовую установку с двигателями координатных перемещений.
Схема действий здесь довольно проста. Скорость удаления или приближения уменьшается до минимума, определяющегося чувствительностью измерителей относительной скорости. Пусть это будет 1,5 см/с. Тогда расстояние от 10 до 50 км (с учётом особенностей движения спутника на орбите) увеличится примерно за 9-10 суток. Когда расстояние приблизится к 50 км, на втором блоке выдаётся импульс, изменяющий знак относительной скорости, и блок начинает сближаться со станцией, доходя до своих 10 км ещё через 9 суток, и т. д.
Если относительную скорость измерять с точностью до сантиметра в секунду (что вполне реально для современной радиолокационной техники), то топлива на поддержание частей станции в заданном относительном положении потребуется намного меньше, чем того, которое мы в любом случае обязаны тратить на компенсацию торможения станции атмосферой. Таким образом, телескоп, например, можно держать в 10-50 км позади базового блока; производственный модуль - на расстоянии в 10-50 км впереди; заправочный модуль пусть будет ещё дальше впереди - например, в 60-100 км.
Состав станции-облака может расширяться и меняться. Естественно было бы использовать базовый блок станции, где размещается дежурная смена космонавтов, как геофизический модуль с аппаратурой экологического контроля, исследований природных ресурсов и т. п. Там же можно держать средства для медицинских и биологических исследований.
На этом блоке должно быть несколько причалов - для пилотируемых и грузовых кораблей, а также для орбитальных «автомобилей», то есть аппаратов, предназначенных для перелётов космонавтов между объектами станции с целью их обслуживания.
Продолжение следует
compulenta.computerra.ru
--------------------------------------------------
Еще по теме:
Бомбардировочные силы открытого космоса Ответный удар История советской космонавтики. Проект "Спираль" Все самое интересное о космосе здесь -
ru_deep_space