О могуществе и величии человеческогo разума

Nov 25, 2017 00:26

Несколько лет назад в ЖЖ был громадный холивар за тройку первокласснику. Народ негодовал, как смели поставить тройку за пример 9*2 = 18. Tам, по смыслу, надо было 2*9, а коммутативность умнжения ещё видимо не проходили. Народ никак не мог понять, что оная коммутативность - вовсе не очевидность, а поразительный экспериментальный факт(хотя и несложно доказуемый). И возмущались следованием методикам. Хотя по моему само возмущение доказывает, что методики годные, народ выучил что умножение коммутативно и не может в этом даже усомниться.
Другой аналогичный факт - что число предметов в конечном множестве - спичек в коробке, дров в поленице, жителей города в конкретный данный момент - нечто точно определённое. Людям "кaжется", что это очевидно, они знают это с рождения. На самом деле - это также поразительный факт, совершенно, имхо, недоступный интуиции. Более того, экспериментально он непосредственно не подтверждается. В самом деле, если будем перечитывать достаточно большое мн-во , обязательно собьёмся, пересчитывая несколько раз, получим разные ответы. Вот это - действительно экспериментальный факт :-) Те обнаружение этогo факта - т е открытие, что у любого конечного0н-ва есть инвариант - число предмметов в нём - одно из величайших достижений и этапных человеческого разума, поразительный взлёт фантазии и абстрактного мышления.
На самом деле, попробуйте придумать рассуждение, обьясняющее, почему при разных пересчётах в произвольном порядке мы получим одно и тоже число. Не димаю, что больше чем один человека из десяти сможет это сделать. Но на самом деле рассуждение несложно, но требует некоторой математической и логической культуры.

Рассуждение такое.
[Spoiler (click to open)]Пусть мы начинаем считать спички. Берём 1-ую и прицепляем к ней лейбл "1". Следующую - прицепляем лейбл "2" и так до последней, у ней лейбл "n".
Теперь спички снова сваливаем в кучу и начинаем считать заново. Берём 1-ую попавшуюся. На ней какой-то лейбл. Если это не "1" - вытаскиваем спичку с лейблом "1" и меняем лейблы. И так далее - вытаскиваем следующую, если на ней не наименьший оставшийсяя лейбл - меняем лейблы и так до конца.
Чтобы превратить это рассуждение в д-во, надо действовать наоборот - с последнего и проводить индукцию - но так яснее.
Заметим, что мы не используем арифметические свойства чисел в этом рассуждении - а только свойство "отделимости" от других, уникальности.

Рассуждение, как видим, достаточно простое и ясное. Величие человеческог разума не в нём, а в т открытии самого инварианта - натуральных чисел, идеи счёта.

Психология, размышлизмы, Математика

Previous post Next post
Up