Продолжаем изучать
все САМОЕ САМОЕ что существует в мире.
Группа ученых из Вашингтонского университета в Сент-Луисе, возглавляемая профессором Ген K Беаре (Gene K. Beare) и доктором философии Лихонгом Ванном (Lihong Wang), создала новую
сверхскоростную камеру, которая позволяет ученым запечатлевать ход крайне быстротекущих процессов и явлений, таких, как
движение и отражение от зеркала импульса лазерного света. В новой камере использована технология сверхбыстрой сжатой съемки (compressed ultra-fast photography, CUP) и в основе этой технологии лежит метод, позволяющий получать достаточно качественные изображения из меньшего количества данных, получаемых светочувствительным датчиком.
Новая CUP-камера позволяет снимать со скоростью около 100 миллиардов кадров в секунду. И при этом, она еще не
является самой быстрой камерой в мире, Но, в отличие от других камер-рекордсменов, которые
могут производить съемку одинаковых чередующихся событий, новая CUP-камера способна снять непосредственно сразу все то, что видит ее объектив.
Давайте посмотрим на видео, как это выглядит …
Камера фотографирует объект при помощи специального сложного объектива, который проводит фотоны света через ряд преобразований к поверхности небольшого устройства. Это устройство, digital micromirror device (DMD), и является «сердцем» всей камеры. Оно имеет размеры, сопоставимые с размерами небольшой монеты, но на его поверхности находится около 1 миллиона крошечных согласованных микрозеркал, размеры каждого из которых составляют 7 на 7 микрометров.
Эти зеркала выполняют двойную роль, во-первых, они разбивают изображение на пикселы, удаляя те пикселы, которые заключают в себе избыточную информацию. Оставшаяся часть отраженного света направляется в сторону щелевой широкополосной камеры, где при помощи двух электродов происходит превращение фотонов в электроны, обладающие различной энергией, т.е. скоростью движения. На электроды подается высокочастотное пилообразное электрическое напряжение, которое выполняет роль отклоняющей системы развертки камеры, заставляя электроны с разной энергией ударить в поверхность чувствительного датчика в определенных местах, соответствующих их энергии. И все эти преобразования выполняются в камере очень быстро, в течение порядка 5 пикосекунд.
Кадры, точнее, данные, полученные датчиком CUP-камеры еще не являются собственно кадрами. Кадры изображения получаются позже, после обработки компьютером, который использует алгоритмы так называемого цифрового восстановления изображения. Естественно, из ограниченного набора данных, получаемых датчиком камеры, не получается составить качественное изображение с высокой разрешающей способностью. Но и того, что получается, вполне достаточно для того, чтобы увидеть процесс отражения света, процесс изменения скорости и траектории движения света в момент пересечения границы между двумя разными средами, и многие другие процессы, которые происходят быстрее, чем могут двигаться фотоны света.
Наличие высокоскоростной CUP-камеры, способной снимать быстрые процессы за один раз, позволит инженерам и ученым увидеть те явления из области оптических коммуникаций и квантовой механики, которые до этого были скрыты от человеческих глаз. К примеру, такая камера может визуализировать процесс преломления света вокруг структур метаматериалов, из которых изготавливают сейчас многочисленные устройства сокрытия, плащи-невидимки. Эта камера способна снять колебания луча света, попавшего в зазор очень малой величины, и процесс передачи квантовой информации от кубита к импульсу света и наоборот.
Click to view
А самой быстрой камерой является устройство, появившееся на свет в 2011 году, которое может обеспечить скорость съемки на уровне одного триллиона кадров в секунду.
Исследователи из Массачусетского технологического института разработали и создали новую систему съемки видеоизображений, которая обладает поистине фантастической скоростью - она может снимать один триллион кадров в секунду. Андреас Фелтен (Andreas Velten), ученый из MIT Media Lab, характеризует возможности новой камеры всего одной фразой: «Во Вселенной не существует ничего, что являлось бы слишком быстрым для этой камеры».
Основой новой высокоскоростной камеры является относительно новая технология, называемая камера с линейной разверткой (streak camera). Эта камера, стоящая порядка 250 тысяч долларов, имеет диафрагму в виде узкой щели. Фотоны света, проходящие сквозь узкую щелевидную диафрагму, попадают под воздействие высокочастотного электрического поля, которое отклоняет их траекторию в направлении, перпендикулярном направлению диафрагмы камеры. Поскольку напряженность электрического поля изменяется с большой скоростью, оно отклоняет траекторию более поздно прибывших фотонов более сильно, чем фотонов, прибывших немногим ранее.
И в результате такого трюка получается двухмерное изображение. Одна координата этого изображения, как и положено, является пространственной координатой, а вторая координата является разверткой первой пространственной координаты по времени. Обобщив все вышесказанное можно сказать, что результирующее изображение является разверткой времени прибытия фотонов, прошедших сквозь одномерный «срез» пространства.
Несмотря на такую необычность снимков, сделанных камерой с линейной разверткой, такая камера может делать подлобные снимки с потрясающей скоростью - до триллиона кадров в секунду. Изначально такая камера предназначалась для изучения света, который выделяется в результате химических реакций и характеристик света, прошедшего через определенные химические вещества и соединения. В первую очередь химиков интересовали длины волн света, поглощенного веществами, и изменения интенсивности излучаемого света в течение длительного промежутка времени. Тот факт, что камера фиксирует всего одну пространственную координату, не являлся для них помехой.
Но наличие всего одной пространственной координаты - это серьезный недостаток камеры, если планировать с ее помощью осуществление сверхскоростной съемки. Для обхода этого недостатка камеры профессор Рэмеш Рэскэр (Ramesh Raskar) и профессор химии Моунджи Бавенди (Moungi Bawendi) применили весьма необычный трюк. Для съемки видео, на котором видно прохождение светового импульса сквозь бутылку с водой, было сделано множество одномерных снимков, каждый из которых отличался от предыдущего второй пространственной координатой. Затем набор одномерных видео был совмещен и объединен в обычное, двухмерное видео с помощью специального программного обеспечения.
Естественно, «актером» для съемки видео был не один единственный импульс лазерного света. Для каждого снимка лазер вырабатывал новый импульс. Естественно, что такая съемка возможна только лишь при условии четкой синхронизации работы камеры, лазера и соблюдения одинаковых условий окружающей среды. Но это все достаточно легко реализуется с помощью набора оптического, электронного и другого оборудования.
Свету, проходящему через бутылку, требуется всего одна наносекунда, что бы рассеяться и исчезнуть. А для того, что бы собрать все необходимые данные, т.е. сделать все снимки, необходимые для получения полноценного конечного видео, требуется более часа времени. По этой причиной исследователи называют свое детище «самой медленной самой быстрой камерой в мире».
Поскольку сверхскоростная камера для записи видео требует многократного повторения одного и того же события, она не в состоянии записать явления, которые нельзя точно воспроизвести требуемое количество раз, и единичных явлений. Поэтому область применения такой камеры будет достаточно узка и специфична, ее можно будет использовать в анализе структуры материалов, биологических тканей и во многих других физических исследованиях и экспериментах. Но даже в тех случаях она станет источником огромного количества научной информации.
Click to view
Click to view
Click to view
источник Вот кстати, еще интересный опыт -
Вода + вибро + камера, а вот тут
Не переживайте, гифка ГРУЗИТСЯ ! Оригинал статьи находится на сайте
ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -
http://infoglaz.ru/?p=56685