В первых трёх фильмах эпопеи «Звёздные войны» есть множество кадров и целых сцен, сразу же вошедших в историю мирового кинематографа. Одна из таких - момент, когда Люка Скайуокера оснащают высокотехнологическим протезом руки, потерянной в ходе поединка с Дартом Вейдером.
Протез выглядит и функционирует неотличимо от натуральной руки и даже, похоже, передаёт тактильные ощущения. То есть является почти совершенным «бионическим», как сегодня принято называть подобные вещи, протезом. К сожалению, земной науке до тех технологий, которые применялись давным-давно, в далёкой галактике, ещё идти и идти.
Термин «бионический» происходит от названия «бионика»: так именуется прикладное направление науки о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Бионика тесно (и даже неразрывно) связана с целым рядом других наук - биологией, физикой, химией, кибернетикой, а заодно с электроникой, навигацией, связью, морским делом и так далее.
Бионические протезы и импланты - лишь одно из направлений, в котором ведутся исследования, связанные с бионикой; и одно из самых важных. Основная особенность бионических протезов - это их способность брать на себя функции утраченных органов и конечностей.
Давайте посмотрим на примеры хотя бы относительных успехов в этой области.
Бионические руки
Создание искусственных рук, которые могли бы заменить людям их природные, - задача чрезвычайной сложности. Во-первых, из-за того, насколько деликатным является это «устройство», сколько тончайших движений оно способно совершать. Это уж не говоря о том, что на кончиках пальцев у человека располагаются главные осязательные органы, имитировать которые - особо сложная задача.
Неудивительно, что к настоящему времени ни одного стопроцентно успешного проекта по созданию бионической руки не существует.
Но есть интересные.
i-LIMB - проект активных протезов компании Touch Bionics, ставший коммерческим в 2007 году. Эти протезы являются миоэлектрическими устройствами, «считывающими» биоэлектрические потенциалы, возникающие при сокращении мышц на уцелевшей части руки. i-Limb по-разному реагирует на сокращения разных мышц, осуществляя разные движения.
С помощью этого протеза можно брать и удерживать разные предметы; версия i-LIMB Ultra позволяет двигать пальцами по отдельности; в управляющее программное обеспечение (да-да, без него никак) вписан целый ряд стандартных жестов и захватов, а силу сжатия можно регулировать, что значительно помогает в некоторых ситуациях.
После непродолжительного периода отсутствия активности i-LIMB возвращается в исходное - «естественное» - положение.
i-LIMB Pro в основном рассчитан на ветеранов боевых действий, утративших в бою конечности. Необходимо отметить, что в данном случае о соединении протеза с нервами речи не идёт. Можно научиться ею пользоваться, но нельзя научить сам протез делать что-то, что не прописано в его программе.
Bebionic3 - аналогичный i-LIMB проект миоэлектрической бионической руки. 14 разных захватов и положений руки, возможность выполнять разные действия - в том числе использовать компьютерную мышь и нажимать на курок цветочного обрызгивателя.
Click to view
И i-Limb, и Bebionic3 могут выглядеть достаточно натурально, однако опять же до полноценной замены рукам им очень далеко.
Куда ближе к успеху, например, проект Технического университета Чалмерса; его сотрудники в конце прошлого года объявили, что им удалось создать протез, который управляется частично тем же миоэлектрическим методом, а частично - нервной системой: имплантируемые электроды перехватывают биоэлектрические сигналы, поступающие по нервам из мозга, и встроенный в протез компьютер декодирует их в команды для управляющих моторов. Протез позволяет двигать как всеми пальцами сразу, так и каждым по отдельности.
Уровень интуитивности управления протезом, как уверяют разработчики, значительно превосходит другие активные протезы, представленные на рынке.
Ну а высший пилотаж - это, конечно, искусственные руки, управляемые исключительно нервными сигналами.
Опять же в конце декабря в американском медицинском журнале Lancet был опубликован материал о разработке нейробиолога Эндрю Швартца из Университета Питтсбурга: 53-летней женщине, парализованной от шеи и ниже в результате тяжёлого нейродегенеративного заболевания, вживили в мозг крошечные электроды, с помощью которых она смогла управлять полностью искусственной рукой. В данном случае речь идёт именно о протезе, управляемом непосредственно мозгом. По словам Швартца, его система «декодирует двигательные намерения пациента».
Click to view
Интересно, что проект финансировало Агентство передовых оборонных исследований при Минобороны США - DARPA.
И вот почти уже на днях появились публикации о новом прототипе бионического протеза, передающем в мозг в том числе и тактильные сигналы, - благодаря специальным сенсорам, расположенным на пальцах, в ладони, на запястье. Таким образом, человек в буквальном смысле чувствует, где располагается протез и что он сжимает.
Естественно, до реальных ощущений тут ещё далеко. Более того, использование протеза требует специального импланта, который нельзя носить дольше месяца. Прототип есть прототип.
Бионические ноги
Нога - казалось бы, чуть менее сложное устройство, нежели рука. Тем не менее сымитировать её так, чтобы носитель бионического протеза почти забывал о том, что его конечность имеет ненатуральное происхождение, до сих пор никто не сподобился. Хотя и здесь работы ведутся весьма активно.
Университет Вандербильта уже несколько лет разрабатывает и испытывает бионический протез ноги с двигателями на колене и около ступни. Непосредственным носителем протеза стал 23-летний студент Крейг Хатто, несколько лет назад лишившийся ноги в результате нападения акулы.
Судя по видео, он вполне может сегодня ходить как по ровным поверхностям, так и по наклонным, и снаружи заметна лишь небольшая хромота:
Click to view
Судя по описанию, нога представляет собой автономное устройство, оснащённое мощным компьютером (реализованным на одной схеме) и соответствующим ПО. Нога «сама знает», как ей себя вести в каждый момент времени. Известно, что Хатто проходил с этой ногой расстояния до 13-14 км.
В конце ноября прошлого года много шума наделала история о том, как Зак Воутер, инвалид, лишившийся ноги несколько лет назад, смог подняться на вершину самого высокого в Западном Полушарии здания - 103-этажной Башни Виллиса в Чикаго.
Протез, которым пользуется Воутер, так же как и искусственная нога Хатто, разработан в Университете Вандербилта, на сей раз совместно с Реабилитационным институтом Чикаго. Протез подсоединяется к нервным волокнам в ноге, так что управляется эта искусственная нога «силой мысли».
Click to view
Существует и множество других сходных разработок, причём речь идёт не только о протезах. Например, «бионическая нога» Tibion - это фактически экзоскелет для ног, рассчитанный на пожилых людей с конечностями, парализованными, например, вследствие инсульта.
Click to view
Искусственное сердце
Говоря о бионических протезах, нельзя обойти вниманием и искусственное сердце.
Разработки в этом направлении ведутся более полувека, первые эксперименты относятся к концу 1949 года. Первая успешная попытка имплантации искусственного сердца состоялась в 1982 году: устройство Jarvik-7, разработанное Робертом Ярвиком, было вживлено двум пациентам, один из которых прожил потом 112 дней, а второй - 620 дней.
Последнее поколение «сердцезаменителей» - таких, как Phoenix-7, AbioCor, SynCardia - преимущественно предназначены для временной замены главного насоса в человеческом теле. Расчёт идёт на то, что пациент в итоге получит донорское сердце, которым удастся заменить искусственное устройство.
Управление по контролю за продуктами и лекарствами (США) пока одобрило только два искусственных сердца - SynCardia temporary Total Artificial (одобрено в 2004 году после 10 лет испытаний) и AbioCor Replacement Heart (одобрено в 2006 году).
К несчастью, первая попытка вживить AbioCor в июне 2009 года закончилась малоудачно. Пациент умер в конце августа того же года. Впоследствии разработчик AbioCor - компания AbioMed прекратила маркетинг своего искусственного сердца.
Так что SynCardia, судя по всему, сейчас лидирует в этой области.
Click to view
Кардиохирурги, однако, сталкиваются с двумя неприятностями. Во-первых, часто случается, что организм начинает активно отторгать искусственный орган; во-вторых, у пациентов, перенесших операции по протезированию клапанных механизмов сердца, отмечается Кардиопротезный психопатологический синдром, заключающийся в фиксации внимания на работе имплантированного клапана, сопровождающейся характерными звуковыми явлениями.
Достаточно представить себе, что внутри у вас - шумящее инородное тело, и чувства таких пациентов станут понятны…
Слуховые аппараты
К бионическим протезам можно относить и так называемые кохлеарные имплантаты, представляющие собой медицинские устройства, состоящие из микрофона, звукового процессора и передатчика, которые устанавливаются снаружи, на волосах или коже больного, а также приёмника, имплантируемого подкожно, и цепочки электродов, введённых внутрь слуховой улитки посредством хирургической операции.
Функция кохлеарного имплантата заключается в стимуляции электрическими импульсами волокон слухового нерва в улитке.
Аппараты предназначены для людей с тяжёлой потерей слуха сенсоневральной этиологии.
Кохлеарные импланты - вещь далеко не новая. Методики стимуляции слухового нерва разрабатываются с 1950-х годов, к концу 1950-х относится первая попытка создания кохлеарного имплантата для использования в клинических условиях.
Первые попытки создания «бионического уха» - мультиэлектродного имплантата - относятся к 1978 году. Эксперименты проводились в Университете Мельбурна. На основе этой разработки получился коммерческий продукт, который к концу 2000-х частично вернул слух более чем сотне тысяч человек всех возрастов (вплоть до 6-месячных детей) по всему миру.
Click to view
Устройства, впрочем, очень недёшевы: 45-125 тысяч за весь процесс лечения.
Искусственные глаза
«Компьютерра» ещё в прошлом году писала про глазные имплантаты Argus II (разработан компанией Second Sight) и Bio-Retina.
Argus II состоит из специальной антенны, устанавливаемой на глазное яблоко (или рядом с ним) и специальных очков, оснащённых камерой и соединённых с носимым компьютером. Сигнал, полученный камерой, обрабатывается этим носимым компьютером, после чего передаётся на приёмник, который даёт команду вживлённым электродам начать стимуляцию уцелевших клеток сетчатки глаза и зрительного нерва.
60 электродов - это очень мало, но пациенты могут различать грубые формы предметов и даже читать крупные буквы. Это не говоря уже о возможности ориентироваться в пространстве, которая сама по себе очень ценна.
Сейчас разные компании и научные учреждения разрабатывают аналогичные системы с большим количеством электродов, которые позволят слепым людям видеть окружающее пространство куда лучше.
Click to view
В свою очередь, Bio-Retina представляет собой сенсор с разрешением 24х24 пикселя (то есть всего 576 пикселей), который помещается на не функционирующую сетчатку и подключается прямо к глазному нерву. Встроенный обработчик изображения переводит данные от каждого из пикселей в электрические импульсы таким образом, чтобы мозг мог вычленять оттенки серого на получаемой картинке.
Питание Bio-Retina получает от специальных очков, которые способны проецировать на сенсор инфракрасное излучение. Крохотная солнечная батарея вырабатывает три милливатта, которых вполне достаточно для работы устройства. Пока что ни одного человека с Bio-Retina нет, но первые пациенты получат имплант уже в этом году.
Click to view
Как видим, бионическое протезирование - вполне процветающая область науки, к тому же частично коммерциализованная. К сожалению, все эти бионические устройства, хоть и имитируют работу «живых» органов, не могут их заменить в полной мере.
И вряд ли смогут в ближайшие десятилетия - слишком уж тонкую материю из себя представляет человеческое тело и слишком многое с ним остаётся загадочным и непонятным.
Смотрите также:
Насколько мы близки к созданию полноценного киборга? Британцы создали робота из искусственных органов и конечностей Новый протез руки возвращает ощущение прикосновения День с киборгом: боль, надежды и сны Найджела Экланда Как прожить 150 лет запчасти для людей