Цифры и числа - начало.

Apr 25, 2017 07:54




Кто положил начало арифметике, и кто первый из людей «изобрёл» счёт, на это ответить нельзя. Мы можем назвать лицо, котороеизобрело компас или книгопечатание, порох и паровую машину; нас может интересовать, кто открыл магнит, или кто приготовил писчую бумагу; но никак нельзя решать вопроса, кто положил начало счёту. Уменье считать, по крайней мере, в небольших пределах, а также и потребность считать присущи всякому мыслящему существу. Подобно тому, как живой человек непременно дышит и питается, так точно и человек, живущий сознательной жизнью, мыслит, говорит и считает.

Итак, не может быть и речи о каком-то особом изобретателе счёта, так как эта потребность свойственна всем людям. Поэтому начало арифметики тонет в тех же беспредельных глубинах отдалённых веков, как и начало человечества. Между тем некоторые авторы старинных учебников искали, во что бы то ни стало, указать лицо или народ, которым счёт обязан своим началом. Так, например, в славянских рукописях времён царя Алексея Михайловича эта честь приписывается «древле эллинскому мудрецу Пифагору, сыну Аггинанорову» или же «Сиру, сыну Асинорову», написавшему «численную сию философию (т. е. арифметику) финическими письменами». Византийские историки средних веков шли ещё дальше и не стеснялись признавать прямо чудесное происхождение арифметики: её-де обнародовал на земле некто Феникс, внук бога Нептуна.

Всё это фантазия; но (ЗАДУМАЙТЕСЬ!) на чём-нибудь должна же она быть основана.



Начальные числительные имена

Филологи, знатоки языков, немало и с большим успехом потрудились над вопросом: как образовались слова, выражающие числа: «один», «два» и т. д.? Они признали, что, вероятно, первые числительные имена взяты от тех вещей, которые встречаются всегда в определённом количестве, и именно в таком, каково cамо число. Так, у индусов слово «два» созвучно со словом «глаз»; у малайцев (на острове Яве) слово пять обозначает в то же время руку. И это понятно: глаза обыкновенно встречаются в количестве двух, а пальцы в количестве пяти. И у нас в славянском языке «пять» созвучно с «пядь»: под пядью разумеется длина, которая равна расстоянию между растопыренными крайними пальцами руки.

Но само собой разумеется, что от сходства слов может произойти смешение и сбивчивость понятий. Поэтому у образованных наций давно, с незапамятных времен, выработались особенные числительные имена, которые не сходны с именами каких бы то ни было предметов. Что это случилось очень давно, мы можем видеть на примере индо-европейской семьи народов, и доказывается это таким соображением. Славяне, а также немцы, французы, индусы и греки имеют общие корни. Легко проследить, что первые числительные имена очень сходны и созвучны во всех индо-европейских языках, а из этого мы вправе вывести, что эти числительные имена выработались ещё в отдаленную эпоху, когда все пользовались общим языком.

Вот таблица, в которой представлены латинскими буквами числительные имена из 5 иностранных языков и из 6-го нашего русского цифрами.



Происхожденіе нашихъ цифръ.

Тѣ цифры, которыя употребляются въ настоящее время почти всѣми образованными народами и которыми пользуемся также и мы, называются обыкновенно арабскими; но это названіе онѣ получили вовсе не потому, что обязаны своимъ происхожденіемъ арабамъ: арабы ихъ только принесли въ Европу, а взяли, по всей вѣроятности, у индусов.

Дѣйствительныя, подлинныя арабскія цифры не имѣютъ никакого отношенія къ нашимъ, которыми мы пользуемся теперь. Прежде всего надо сказать, что первоначальное письмо арабовъ было грубо и некрасиво, и едва ли до VII в. по Р. X. были у нихъ какія-нибудь цифры. Только со временъ Магомета, когда сразу былъ данъ чрезвычайный толчекъ развитію арабскаго могущества и образованности, стало у нихъ процвѣтать и письмо. Арабы особенно любили выражать числа такъ, чтобы писать полныя числительныя имена; отсюда естественно вытекаетъ, что съ теченіемъ времени они перешли къ первымъ буквамъ числительныхъ именъ; впослѣдствіи, подобно грекамъ, они стали примѣнять буквы въ алфавитномъ порядкѣ.

Около 773 года по Р. X. арабы приняли индусскую систему цифръ и стали обозначать числа такъ, какъ ихъ обозначали индусы. Сдѣлать это было тѣмъ болѣе легко и естественно, что Индія граничила съ владѣніями арабскихъ халифовъ, и между сосѣдями постоянно были близкія сношенія и торговыя, и научныя.

Заслуга индусовъ въ развитіи ариѳметики громадна и неисчислима. Во-первыхъ, они сильно уменьшили количество цифръ и довели его до 10, считая въ томъ числѣ и нуль; между тѣмъ, у грековъ, у евреевъ, у сирійцевъ и т. д. цифръ было не менѣе 27; правда, римляне умѣли обходиться 7-ю цифрами, но за то у нихъ была маса мелкихъ значковъ. Во-вторыхъ въ индусской системѣ ясно проглядываетъ необыкновенная простота, точность и объединенность: каждый разрядъ выражается обязательноі одной цифрой, а не нѣсколькими; значеніе цифры легко угадать по мѣсту, которое она занимаетъ, и не надо задумываться ни надъ сложеніемъ, ни надъ вычитаніемъ сосѣднихъ знаковъ, какъ это бываетъ въ другихъ системахъ; кромѣ того, десятки, сотни, тысячи и милліоны и высшіе разряды пишутся точно такъ же, какъ простыя единицы, поэтому не надо изобрѣтать особенныхъ правилъ для высшихъ разрядовъ, а можно безконечно прилагать одно и то-же правило. Всѣ эти выгоды настолько ясны и безспорны, что всякій народъ, какъ только ознакомится со способомъ индусовъ и пойметъ его, то перемѣняетъ свою систему на ихъ систему.

Главное преимущество индусской системы заключается въ томъ, что значеніе каждой цифры вполнѣ опредѣляется ея мѣстомъ, т.е. если, например, цифра стоитъ на 4-мъ мѣстѣ справа, то она выражаетъ тысячи, и, слѣдовательно, чтобы написать тысячу, надо только поставить цифру 1 на 4-е мѣсто, но не перемѣнять ея формы и не приписывать какого-нибудь особеннаго слова или значка. А какъ же быть, если какой-нибудь разрядъ въ числѣ пропущенъ, например, если число состоитъ только изъ единицъ и сотенъ и не содержитъ десятковъ? Чѣмъ замѣщать недостающіе разряды? Индусы отвѣчали коротко и ясно: надо замѣщать нулемъ. Какъ же могли индусы прійти къ идеѣ обозначенія чиселъ? какъ они придумали нуль? Вѣрнѣе всего послѣ счета нагляднаго, т.е. счета на пальцахъ, камешкахъ и черточкахъ они перешли къ спеціальнымъ счетнымъ приборамъ, именно къ шарикамъ и косточкамъ на проволокахъ и шнурахъ; затѣмъ естественно было чертить колонны на пескѣ, дощечкахъ и бумагѣ и въ эти колонки или желобки класть тѣ же косточки и шарики. Дальнѣйшая ступень: въ колоннахъ чертятся значки или кладутся въ нихъ костяшки съ награвированными цифрами; теперь остался одинъ шагъ и до того, чтобъ цифрамъ придавать значеніе по мѣсту; дѣйствительно, если всѣ колонны заняты, то ихъ края, пожалуй, можно и стереть, потому что и безъ нихъ можно догадаться, что первая справа костяішка обозначаетъ единицы, сосѣдняя, т.е. вторая, десятки и т. д. Получится гладкая, ровная поверхность, на которой подрядъ лежатъ костяшки, или начерчены значки; но какъ же быть съ той колонной, въ которой нѣтъ значка, потому что въ данномъ числѣ нѣтъ соотвѣтствующихъ единицъ? Подобную колонну стирать нельзя, потому что иначе смыслъ всѣхъ другихъ, лежащихъ влѣво, измѣнится, но ее-то одну именно и достаточно начертить, положимъ въ такой формѣ: || или II или 0. Слѣдовательно, нуль образовался изъ фигуры пустой колонны.

Нулемъ индусы стали пользоваться гораздо позже, около VІІ-го или VІІІ-го вѣка по Р. X. и во всякомъ случаѣ не ранѣе V-го. Опредѣленное извѣстіе о нулѣ мы встрѣчаемъ въ первый разъ въ 738 г. по Р. X.

Наши цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 получили, какъ признаетъ большинство ученыхъ, начало отъ индусовъ, но это вовсе не значитъ, что цифры индусовъ имѣли именно такой видъ, какой онѣ имѣютъ у насъ. Въ XIII столѣтіи, когда индусская система сдѣлалась извѣстной всѣмъ европейскимъ математикамъ, мы видимъ 1, 3, 6, 8, 9, 0 въ той самой формѣ, въ какой онѣ употребляются и теперь, а остальныя четыре цифры не похожи на наши нынѣшнія. Въ XV столѣтіи окончательно выработались цифры 2 и 4, но 7 упорно продолжало писаться въ видѣ ижицы или угла. 5 дольше всѣхъ не получало нынѣшняго своего облика и продолжало изображаться схоже съ 4-мя. Едва въ XVI столѣтіи можно въ первый разъ встрѣтить систему 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 въ ея нынѣшнемъ, всѣмъ намъ извѣстномъ видѣ. Всю эту измѣнчивость цифръ легко объяснить тѣмъ, что до 1471 года, когда было отпечатано въ первый разъ математическое сочиненіе типографскимъ шрифтомъ, всѣ книги переписывались ручнымъ способомъ, и вліяніе переписчиковъ на измѣненіе формъ цифръ могло быть громаднымъ. Кромѣ того, надо принять во вниманіе, что развитіе цифровыхъ фигуръ шло въ теченіе многихъ сотенъ лѣтъ. И если въ наши дни, когда печатные шрифты получили устойчивую форму, все-таки замѣчается разнообразіе въ печатныхъ буквахъ и въ различныхъ почеркахъ, то, тѣмъ болѣе оно должно было проявляться въ средніе вѣка, когда произволу переписчиковъ открывалась широкая возможность.

Однако же не всѣ ученые согласны съ тѣмъ, что дѣло шло именно такъ, а не иначе. Нѣкоторые изъ нихъ обратили вниманіе на то, что первыя 4 цифры древнихъ египтянъ, которыми выражаютъ порядковыя числительныя, и, кромѣ того, цифра 9 сильно напоминаютъ индусскія цифры. Если это такъ, то, значитъ, изобрѣтателями цифръ скорѣе надо счесть египтянъ, а не индусовъ. На это мы отвѣтимъ слѣдующее: подобное предположеніе очень возможно…

Есть ещё одно любопытное предположеніе. Будто бы каждая цифра образовалась изъ столькихъ точекъ или изъ столькихъ черточекъ, сколько въ этомъ числѣ единицъ. Если такъ, то цифра 4 состоитъ изъ
цифра 8 изъ
цифра 7 изъ
Но этого никакъ не можетъ быть, потому что это чрезвычайная натяжка и одна только игра остроумія. Такимъ путемъ можно всякую цифру привести къ столькимъ черточкамъ или точкамъ, къ сколькимъ угодно.

Распространеніе индусскихъ цифръ въ Россіи.

Какія были цифры у нашихъ предковъ до введенія христіанства? Вѣрнѣе всего никакихъ.

Для своихъ небольшихъ разсчетовъ, надо полагать, они пользовались или пальцами, или нарѣзками на палочкахъ, иначе сказать бирками, которыми и сейчасъ пользуется темное крестьянство. Знакомство съ греками, введеніе христіанства и переводъ священныхъ книгъ на славянскій языкъ привели къ тому, что въ Россіи появилась своя славянская система цифръ. Нерадостна и незавидна была участь ариѳметики въ Россіи. На ариѳметику смотрѣли косо, неласково и съ подозрѣніемъ; она была на замѣчаніи вмѣстѣ съ «Остронумѣей», ежеесть «звѣздочетье», и «волхвованіемъ». По мнѣнію проф. Бобынина, появленіе въ Россіи первыхъ ариѳметическихъ рукописей должно быть отнесено къ началу XII вѣка. Среди нихъ самая извѣстная: «Кирика діакона и доместика Новгородскаго Антоніева монастыря ученіе, имже вѣдати человѣку числа всѣхъ лѣтъ». Подлинники старинныхъ рукописей, къ большому сожалѣнію для науки, утерялись постепенно въ теченіе столѣтій, а также не перестаютъ утериваться и въ наши дни. Такъ, во время пожара Москвы въ 1812 году погибла древнѣйшая ариѳметика (XVI в.). «Сія книга рекома по-гречески Ариѳметика, а по-нѣмецки Алгоризма, а по-русски Цифирная Счетная мудрость». Самою замѣчательною изъ сохранившихся рукописей Бобынинъ признаетъ ариѳметику XVII в. съ такимъ характернымъ предисловіемъ: «Пятая мудрость въ семи великихъ мудростѣхъ нарицается Ариѳметика. Начало мудростемъ: Грамматика, Геометрія, Астрономія, Музыка. Тѣ 4 мудрыя книги. Сія мудрость есть изыскана древними философи остропаримаго разума, нарицается ариѳметика, сирѣчь счетная-ариѳмосъ по-гречески счетъ толкуется. Безъ сея мудрости ии единъ философъ, ни докторъ не можетъ быти. По сей мудрости гости по государствамъ торгуютъ и во всякихъ товарѣхъ и въ торгѣхъ силу знаютъ, и во всякихъ вѣсахъ и въ мѣрахъ, и въ земномъ верстаніи, и въ морскомъ теченіи. Сія мудрость есть многихъ въ прикуиѣхъ корысти сподобляетъ и честь даруетъ и умъ человѣческій высокопаривъ творитъ, и память укрѣпляетъ, и острыхъ острѣе творитъ въ разумъ. И сего ради слыши сію мудрость и вонми яже глаголетъ. Ариѳметика. Азъ есмь отъ Бога свободная мудрость высокозрительнаго и остромысленнаго разума и добродатное придарованіе человѣческое. Мною человѣкъ превосходитъ безсловесное неразуміе. Азъ бо есмь своима легкима крылома парю выспрь подъ облаки, аще и нѣсть мя тамо. Азъ заочныя, невидимыя и предъочныя дѣла объявляю; въ солнечномъ же и въ лунномъ теченіи разумъ многимъ подаваю; и въ морскомъ плаваніи и въ земномъ верстаніи наставляю и мѣру указую; и въ купеческихъ вещѣхъ, и во всякихъ числѣхъ недоумѣніе разрѣшаю. И сего ради отъидете отъ меня иже меламколіею обдержаны суть, и у которыхъ мозги съ черною желчью смѣшаны, а моимъ ученикомъ достоитъ имѣти суптильный чистый и высокій разумъ».

Такія пышныя предисловія составляютъ характерную черту ариѳметикъ этого періода. Текстъ въ нихъ писанъ славянскими буквами, и цифры употребляются въ большинствѣ славянскія. Индусскія цифры сдѣлались извѣстными въ Россіи съ 1611 года и появились первоначально въ тѣхъ славянскихъ книгахъ, которыя печатались въ юго-западныхъ типографіяхъ. Здѣсь сказывается польское вліяніе: оно энергично воздѣйствовало на Россію въ XVII ст. и много сообщило намъ такого, что само получило отъ западно-европейской культуры.

Первоначально индусскія цифры употреблялись только для обозначенія страницъ въ книгахъ, а самый текстъ довольствовался славянскими цифрами. Въ 1647 г. въ Москвѣ издали книгу подъ заглавіемъ: «Ученіе и хитрость строенія пѣхотныхъ людей», въ ней цифры уже новыя, а не старыя-церковно-славянскія. Въ «Юрналѣ объ осадѣ Нотебурга» (1702 г.) половина экземпляровъ имѣла «числа русскія», т.е. со славянскими цифрами, а другая «цифирныя».

Классическій и знаменитый трудъ по части ариѳметики-«Ариѳметика, сирѣчь наука числительная. Съ разныхъ діалектовъ на славенскій языкъ преведеная, и во едино собрана и на двѣ книги раздѣлена. Въ лѣто отъ сотворенія міра
отъ Рождества Бога Слова
Сочинися сія книга чрезъ труды Леонтіа Магницкаго». Это извѣстная ариѳметика Магницкаго (1703 г.), по которой учились всѣ во времена Петра Великаго; по ней работалъ самоучкой и нашъ великій Ломоносовъ. Это книга большого формата, напоминающая своей формой и шрифтомъ церковное Евангеліе или скорѣе Апостолъ. Въ ней болѣе 300 страницъ. Весь шрифтъ и обозначеніе страницъ- славянскіе, вычисленія же производятся на индусскихъ цифрахъ. Нумерація прямо и рѣшительно къ нимъ и переходитъ, минуя совершенно старые славянскіе знаки. «Что есть нумераціо; нумераціо есть счисленіе еже совершенно вся числа рѣчію именовати, яже въ десяти знаменованіяхъ или изображеніяхъ содержатся и изображаются сице: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0».

Во времена послѣпетровскія совершенно исчезаютъ славянскія цифры и славянскій текстъ. Книги принимаютъ такой шрифтъ и такую форму, какими мы пользуемся и теперь. Напоминаетъ лишь о старыхъ временахъ тяжелый слогъ и неупотребительныя въ настоящемъ литературномъ языкѣ выраженія.



В 1708 году Петр 1 приказал заменить буквенные обозначения чисел европейскими (арабскими) цифрами. Иногда все же писали смешанной системой записи чисел, например, на медных копейках 1721 года дата отчеканена - 17К1.

Всеволод Константинович Беллюстин: Как постепенно дошли люди до настоящей арифметики. 1909 г.

Славяне Предки Русь, История

Previous post Next post
Up