SABRE - Гибридный воздушно-реактивный/ракетный двигатель

Dec 10, 2012 16:26

Оригинал взят у thexhs в SABRE - Гибридный воздушно-реактивный/ракетный двигатель
Продолжая цикл статей (лишь потому что мне нужен еще один реферат, теперь по предмету "двигатели") - статья о весьма перспективном и многообещающем проекте двигателя SABRE. В общем то о нем и в рунете немало написано, но по большей части весьма сумбурные заметки и дифирамбы на сайтах новостных агентств, а вот статья на английской википедии мне весьма глянулась, они вообще, приятно богаты деталями и подробностями - статьи на английской википедии.

Так что в основу сего поста (и моего будущего реферата) легла именно статься, в оригинале лежащая по адресу: http://en.wikipedia.org/wiki/SABRE_(rocket_engine) , так же было немного добавлено отсебятины и пояснений, и собран по просторам инета иллюстративный материал (вот чем чем, а богатством картинок статьи на википедии не отличаются)




Ниже следует


SABRE (Synergistic Air-Breathing Rocket Engine) - Синергичный воздушно-реактивный ракетный двигатель - концепт, разрабатываемый компанией Reaction Engines Limited, гиперзвуковой гибридный воздушно реактивный/ракетный двигатель с предварительным охлаждением. Двигатель разрабатывается для обеспечения возможности одноступенчатого выхода на орбиту для аэрокосмической системы Skylon. SABRE представляет собой эволюционное развитие серии LACE и LACE-подобных двигателей, разрабатывавшихся Аланом Бондом в начале/середине 1980 в рамках проекта HOTOL.

Конструктивно это один двигатель с комбинированным рабочим циклом, имеющий два режима работы. В воздушно-реактивном режиме сочетается турбокомпрессор с легким теплообменником-охладителем, расположенным непосредственно за конусом воздухозаборника. На высокой скорости теплообменник охлаждает горячий, сжатый воздухозаборником воздух, что в позволяет обеспечить необычайно высокую степень сжатия в двигателе. Сжатый воздух далее подается в камеру сгорания, как у обычного ракетного двигателя, где он обеспечивает воспламенение жидкого водорода. Низкая температура воздуха позволяет использовать легкие сплавы и снизить общий вес двигателя - что весьма критично для выхода на орбиту. Добавим, что в отличии от LACE концептов, предшествувавших этому двигателю, SABRE не сжижает воздух, что дает большую эффективность.



Рис.1. Аэрокосмический ЛА Skylon и двигатель SABRE

После закрытия конуса воздухозаборника на скорости М = 5,14 и высоте 28,5 км, система продолжает работать в закрытом цикле высокопроизводительного ракетного двигателя, потребляющего жидкий кислород и жидкий водород с находящихся на борту баков, позволяя Skylon достичь орбитальной скорости после выхода из атмосферы в крутом наборе высоты.

Так же, на основе двигателя SABRE, был разработан воздушно-реактивный, называемый Scimitar, для перспективного гиперзвукового пассажирского авиалайнера А2, разрабатываемого в рамках программы LAPCAT, финансированной Европейским Союзом.

В ноябре 2012 компания Reaction Engines объявила о успешном завершении серии испытаний, которые подтверждают работоспособность системы охлаждения двигателя - одного из главных препятствий на пути к завершению проекта. Европейское космическое агенство (ESA) так же оценило теплообменник-охладитель двигателя SABRE, и подтвердило наличие технологий, необходимых для воплощения двигателя в металле.



Рис.2. Модель двигателя SABRE

История

Идея двигателя с предварительным охлаждением впервые возникла у Роберта Кармайкла в 1955 году. За этим следовала идея двигателя с сжижением воздуха (LACE), первоначально изучалась Marquardt и General Dynamics в 1960х годах, как часть работ US Air Force по проекту Aerospaceplane.
LACE система располагается непосредственно за сверхзвуковым воздухозаборником - таким образом сжатый воздух попадает сразу в теплообменник где моментально охлаждается с использование некоторого количества жидкого водорода, хранящегося на борту в качестве топлива. Полученный жидкий воздух затем обрабатывается, для извлечения жидкого кислорода, который поступает в двигатель. Однако количество прошедшего через теплообменник и нагретого водорода, значительно больше, чем может быть сожжено в двигателе, и его избыток просто сливается за борт (тем не менее он тоже дает некоторый прирост тяги).

В 1989 года, когда финансирование проекта HOTOL было прекращено, Бонд и другие специалисты образуют компанию Reaction Engines Limited для продолжения исследования. Теплообменник двигателя RB545 (который предполагалось использовать в проекте HOTOL) имел некоторые проблемы с хрупкостью конструкции, а так же относительно высоким расходом жидкого водорода. Так же его использование было невозможно - патент на двигатель принадлежал компании Rolls Royce, и самый существенный аргумент - двигатель был объявлен совершенно секретным. По этому Бонд пошел на разработку нового двигателя SABRE, развивая идеи, заложенные в предыдущий проект.

По состоянию на ноябрь 2012 года, было завершено тестирование оборудования в рамках темы «Технология теплообменника, критичная для гибридного ракетного двигателя, питаемого воздухом и жидким кислородом». Это был важный этап в процессе разработки SABRE, который продемонстрировал потенциальным инвесторам жизнеспособность технологии. Двигатель основан на теплообменнике, способном охладить поступающий воздух до -150°C (-238°F). Охлажденный воздух смешивается с жидким водородом и сгорая, обеспечивает тягу для атмосферного полета, перед переключением на жидкий кислород из баков, при полете вне атмосферы. Успешные испытания этой, столь критической технологи, подтвердили что теплообменник может обеспечить потребности двигателя в получении достаточного количества кислорода из атмосферы для работы с высокой эффективностью в условиях низко-высотного полета.

На авиашоу Фарнборо 2012 Дэвид Уиллетс, являющийся министром по делам университетов и науки Объединенного королевства, выступил по этому поводу с речью. В частности, он сказал, что данный двигатель, разработчиком которого является компания Reaction Engines, реально может повлиять на условия игры, действующие в космической отрасли. Успешно завершившиеся испытания системы предварительного охлаждения являются подтверждением высокой оценки концепции двигателя, которую сделало Космическое агентство Великобритании в 2010 году. Министр также добавил, что если однажды им удастся использовать данную технологию для осуществления собственных полетов коммерческого назначения, то это, несомненно, будет фантастическим по своему масштабу достижением.

Министр также отметил, что существует маленькая вероятность того, что Европейское космическое агентство согласится финансировать Skylon, поэтому Великобритания должна быть готова заниматься строительством космолета по большей части на свои средства.



Рис.3. Аэрокосмический ЛА Skylon - компоновка

Следующий этап программы SABRE предусматривает наземные испытания масштабной модели двигателя, способной продемонстрировать полный цикл. ESA выразило уверенность в успешной постройке демонстратора и заявило о том, что он будет представлять собой «важную веху в развитии этой программы и прорыв в вопросе двигательных установок по всему миру»

Конструкция



Рис.4. Компоновка двигателя SABRE

Подобно RB545, конструкция SABRE скорее ближе к традиционному ракетному двигателю, чем к воздушно реактивному. Гибридный Воздушно-реактивный/Ракетный двигатель с предварительным охлаждением использует жидкое водородное топливо в сочетании с окислителем, поставляемым либо в виде газообразного воздуха с помощью компрессора, либо в виде жидкого кислорода, поставляемого из топливных баков с помощью турбонасоса.

В передней части двигателя расположен простой осесимметричный воздухозаборник в виде конуса, который тормозит воздух до дозвуковых скоростей, используя всего два отраженных скачка уплотнения.

Часть воздуха через теплообменник в центральную часть двигателя, а оставшийся проходит через кольцевой канал в второй контур, представляющий собой обычный ПВРД. Центральная часть, расположенная за теплообменником, представляет собой турбокомпрессор, приводящийся в движение газообразным гелием, циркулирующим по замкнутому каналу цикла Брайтона. Сжатый компрессором воздух поступает под высоким давлением в четыре камеры сгорания ракетного двигателя комбинированного цикла.



Рис.5. Упрощенный цикл работы двигателя SABRE

Теплообменник

Поступающий в двигатель на сверх/гиперзвуковых скоростях воздух становится очень горячим после торможения и сжатия в воздухозаборнике. С высокими температурами в реактивных двигателях традиционно справлялись используя тяжелые сплавы на основе меди или никеля, за счет снижения степени сжатия компрессора, а так же снижением оборотов, во избежание перегрева и плавления конструкции. Однако для одноступенчатого КА такие тяжелые материалы неприменимы, и необходима максимально возможная тяга, для выхода на орбиту в кратчайшее время, чтобы минимизировать тяжесть потерь.

При использовании газообразного гелия в качестве теплоносителя, воздух в теплообменнике существенно охлаждается от 1000°C до -150°C, при этом избегая сжижения воздуха или конденсации водяного пара на стенках теплообменника.



Рис.6. Модель одно из модулей теплообменника

Предыдущие версии теплообменника, например применяемые в проекте HOTOL пропускали водородное топливо непосредственно через теплообменник, но использование гелия как промежуточного контура между воздухом и холодным топливом сняло проблему водородной хрупкости конструкции теплообменника. Однако резкое охлаждение воздуха сулит определенные проблемы - необходимо предотвратить блокировку теплообменника замороженным водяным паром и иными фракциями. В ноябре 2012 года был продемонстрирован образец теплообменника, способный охладить атмосферный воздух до -150°C за 0,01 с.
Одной из инноваций теплообменника SABRE служит спиральное размещение трубок с халагентом, что значительно обещает поднять его эффективность.



Рис.7. Опытный образец теплообменника SABRE

Компрессор

На скорости М=5 и высоте 25 километров, что составляет 20% орбитальной скорости и высоты, необходимой для выхода на орбиту, охлажденный в теплообменнике воздух попадает в весьма обыкновенный турбокомпрессор, конструктивно подобный используемым в обычных турбореактивных двигателях, но обеспечивающий необычайно высокую степень сжатия, благодаря крайне низкой температуре входящего воздуха. Это позволяет сжать воздух до 140 атмосфер перед подачей в камеры сгорания основного двигателя. В отличии от турбореактивных двигателей, турбокомпрессор приводится в действие турбиной, расположенной в гелиевом контуре, а не от действия продуктов сгорания, как в обычных турбореактивных двигателей. Таким образом турбокомпрессор работает на тепле, полученным гелем в теплообменнике.

Гелиевый цикл

Тепло переходит от воздуха к гелию. Горячий гелий из теплообменника «гелий-воздух» охлаждается в теплообменнике «гелий-водород», отдавая тепло жидкому водородному топливу. Контур, в котором циркулирует гелий, работает согласно циклу Брайтона, как охлаждая двигатель в критических местах, так и для привода энергетических турбин и многочисленных агрегатов двигателя. Остаток тепловой энергии используется для испарения части водорода, который сжигается в внешнем, прямоточном контуре.

Глушитель

Для охлаждения гелия, его прокачивают через бак с азотом. В настоящее время для тестов используется не жидкий азот а вода, которая испаряется, понижая температуру гелия и глушит шум от выхлопных газов.

Двигатель

Благодаря тому, что гибридный ракетный двигатель обладает далеко не нулевой статической тягой, летательный аппарат может взлететь в обычном, воздушно-реактивном режиме, без посторонней помощи, подобно оснащенным обычными турбореактивными двигателями. При наборе высоты и падении атмосферного давления, все больше и больше воздуха направляется в компрессор, а эффективность сжатия в воздухозаборнике только снижается. В этом режиме реактивный двигатель может работать на намного большей высоте, чем это было возможно в обычном случае.
При достижении скорости М=5.5 воздушнореактивный двигатель становится не эффективным и отключается, и теперь в ракетный двигатель поступает хранящийся на борту жидкий кислород и жидкий водород, так вплоть до достижения орбитальной скорости (соизмеримо с М=25). Турбонасосные агрегаты приводятся тем же гелиевым контуром, который теперь получает тепло в специальных «предварительных камерах сгорания».
Необычное конструкционное решение системы охлаждения камер сгорания - в качестве охлаждающего вещества используется окислитель (воздух/жидкий кислород) вместо жидкого водорода, во избежание перерасхода водорода и нарушения стехиометрического соотношения (соотношение топлива к окислителю).

Второй существенный момент - реактивное сопло. Эффективность работы реактивного сопла зависит от его геометрии и атмосферного давления. В то время как геометрия сопла остается неизменной, давление существенно изменяется с высотой, следовательно сопла, высокоэффективные в нижних слоях атмосферы, существенно теряют свою эффективность с достижением больших высот.
В традиционных, многоступенчатых системах, это преодолевается простым использованием разной геометрии, для каждой ступени и соответствующего этапа полета. Но в одноступенчатой системе мы все время используем одно и то же сопло.



Рис.8. Сравнение работы различных реактивных сопел в атмосфере и вакууме

Как выход планируется использование специального Expansion-Deflection (ED nozzle) - регулируемого реактивного сопла разрабатываемого в рамках проекта STERN , которое состоит из традиционного колокола (правда сравнительно короче обычного), и регулируемого центрального тела, которое отклоняет поток газа к стенкам. Изменяя положение центрального тела, можно добиться того что выхлоп не займет всю площадь донного среза, а лишь кольцеобразный участок, регулируя занимаемую им площадь соответственно атмосферному давлению.

Так же, в многокамерном двигателе, можно регулировать вектор тяги, изменяя площадь сечения, а следовательно и вклад в общую тягу, каждой камеры.



Рис.9. Реактивное сопло Expansion-Deflection (ED nozzle)

Прямоточный контур

Отказ от сжижения воздуха поднял эффективность работы двигателя, снизив затраты теплоносителя путем снижения энтропии. Однако даже простое охлаждение воздуха требует больше водорода, чем может быть сожжено в первом контуре двигателя.

Избыток водорода сливается за борт, но не просто так, а сжигается в ряде камер сгорания, которые расположены в внешнем кольцевом воздушном канале, образующем прямоточную часть двигателя, в которую поступает воздух, пошедший в обход теплообменника. Второй, прямоточный контур снижает потери вследствие сопротивления воздуха, не попавшего в теплообменник, и так же дает некоторую часть тяги.
На низких скоростях в обход теплообменника/компрессора идет очень большое количество воздуха, а с ростом скорости, для сохранения эффективности большая часть воздуха наоборот, попадает в компрессор.
Это отличает систему от турбопрямоточного двигателя, где все обстоит с точностью до наоборот - на малых скоростях большие массы воздуха идут через компрессор, а на больших - в его обход, через прямоточный контур, который становится настолько эффективным, что берет на себя ведущую роль.

Производительность

Расчетная тяговооруженность SABRE предполагается свыше 14 единиц, при этом тяговооруженность обычных реактивных двигателей лежит в пределах 5, и всего лишь 2 для сверхзвуковых прямоточных двигателей. Столь высокая производительность получена благодаря использованию сверхохлажденного воздуха, который становится весьма плотным и требует меньшего сжатия, и, что более существенно, благодаря низким рабочим температурам стало возможным использовать легкие сплавы для большей части конструкции двигателя. Общая производительность обещает быть выше, чем в случае RB545 или сверхзвуковых прямоточных двигателей.

Двигатель имеет высокий удельный импульс в атмосфере, который достигает 3500 сек. Для сравнения обычный ракетный двигатель имеет удельный импульс в лучшем случае около 450, и даже перспективный «тепловой» ядерный ракетный двигатель обещает достичь лишь величины 900 сек.

Комбинация высокой топливной эффективности и низкой массы двигателя дает Skylon возможность достичь орбиты в одноступенчатом режиме, при этом работая как воздушно-реактивный до скорости М=5,14 и высоты 28,5 км. При этом аэрокосмический аппарат достигнет орбиты с большой полезной нагрузкой относительно взлетного веса, какая не могла быть ранее достигнутой ни одним, неядерным транспортным средством.

Подобно RB545, идея предварительного охлаждения увеличивает массу и сложность системы, что в обычных условиях служит антитезисом принципу конструирования ракетных систем. Также теплообменник очень агрессивная и сложная часть конструкции двигателя SABRE. Правда следует отметить что масса этого теплообменника предполагается на порядок ниже существующих образцов, и эксперименты показали что это может быть достигнуто. Экспериментальный теплообменник добился теплообмена почти в 1 ГВт/м2, что считается мировым рекордом. Небольшие модули будущего теплообменника уже изготовлены.

Потери от дополнительного веса системы компенсируются в закрытом цикле (теплообменник-турбокомпрессор) также как дополнительный вес крыльев Skylon увеличивая общий вес системы, так же способствуют общему увеличению эффективности больше, чем снижению ее. Это большей частью компенсируется разными траекториями полета. Обычные ракеты-носители стартуют вертикально, с крайне низкими скоростями (если говорить о тангенциальной а не нормальной скорости), этот, на первый взгляд неэффективных ход, позволяет быстрей пронзить атмосферу и набирать тангенциальную скорость уже в безвоздушной среде, не теряя скорость на трении о воздух.

В то же время большая топливная эффективность двигателя SABRE позволяют очень пологий подъем (при котором растет больше тангенциальная, чем нормальная составляющая скорости), воздух скорее способствует чем тормозит систему (окислитель и рабочее тело для двигателя, подъемная сила для крыльев), дает в итоге намного меньший расход топлива для достижения орбитальной скорости.

Некоторые характеристики

Тяга в пустоте - 2940 кН
Тяга на уровне моря - 1960 кН
Тяговоруженность (двигателя) - около 14 (в атмосфере)
Удельный импульс в вакууме - 460 сек
Удельный импульс на уровне моря - 3600 сек

Преимущества

В отличии от традиционных ракетных двигателей, и подобно иным типам воздушно-реактивных двигателей, гибридный реактивный двигатель может использовать воздух, для сжигания топлива, снижая необходимый вес ракетного топлива, и тем увеличивая вес полезной нагрузки.

ПВРД и ГПВРД должны провести большое количество времени в нижних слоях атмосферы, чтобы достичь скорости, достаточной для выхода на орбиту, что выводит на передний план проблему интенсивного нагрева на гиперзвуке, а так же потери в следствии значительно веса и сложности теплозащиты.

Гибридный реактивный двигатель подобный SABRE нуждается только в достижении низкой гиперзвуковой скорости (напомним: гиперзвук - все что после М=5, следовательно М = 5,14 это самое начало гиперзвукового диапазона скоростей) в нижних слоях атмосферы, перед переходом на закрытый цикл работы и крутом подъеме с набором скорости в ракетном режиме.

В отличии от ПВРД или ГПВРД, SABRE способен обеспечить высокую тягу от нулевой скорости и до М=5,14, от земли и до больших высот, с высокой эффективностью во всем диапазоне. Кроме того, возможность создания тяги при нулевой скорости означает возможность испытаний двигателя на земле, что значительно сокращает стоимость разработки.

Так же вашему вниманию предлагается некоторое число ссылок по теме:

Сопло
http://www.ukrocketman.com/space.shtml
http://en.wikipedia.org/wiki/Expansion_deflection_nozzle

Еще по двигателю (статья на сайте компании-производителя)

http://www.reactionengines.co.uk/sabre_howworks.html

Некоторые русскоязычные материалы
http://www.weacom.ru/2012/07/18/novye-dvigateli-sabre-budut-podnimat-na-orbitu.html
http://science.compulenta.ru/693595/
http://akhp3.livejournal.com/37497.html
http://technicamolodezhi.ru/news/novosti_nauki_i_tehniki/eschЁ_o_giperbolah_giperzvuka
http://www.po4itay.ru/science/space/5.htm


Технологии, Самолеты, Двигатели, Ракеты, htol

Previous post Next post
Up