Альфред Реньи. Трилогия о математике (М.: Мир, 1980) (окончание)

Apr 06, 2015 13:12

    Заметим, что эта же мысль, но только высказанная другими словами, содержится в трактате Христиана Гюйгенса «О расчетах в азартных играх» (1660): «…Я полагаю, что при внимательном изучении читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории». Последующее развитие науки в полной мере подтвердило эту точку зрения.
    Задавшись целью рассказать о начальном периоде формирования теории вероятностей как математической науки, Реньи решил вести рассказ от имени одного из ее творцов - Блэза Паскаля. С этой целью он создал четыре вымышленных письма Паскаля Пьеру Ферма. При этом он постарался, приблизиться не только к литературному стилю Паскаля, но и к возможному кругу интересовавших ученого проблем. Несомненно, что тем самым Реньи сознательно лишил себя возможности рассказать о многих более поздних направлениях развития, найденных глубоких связях теории вероятностей с естествознанием, инженерным делом, экономикой, организацией производства и пр. Он лишил себя также возможности выявить место теории вероятностей в современной науке, ее роль в процессе создания научной картины мира. Однако такое ограничение имело и свои преимущества - оно дало автору простор для выяснения центральных философских вопросов теории вероятностей. Речь, собственно, идет исключительно о понятии вероятности случайного события, выяснении законности рассмотрения субъективных вероятностей и резкой критике такого подхода.
    Следует отметить такт, с которым Реньи отстаивает диалектико-материалистическую точку зрения на развитие человеческого знания. Заслуживает упоминания и та настойчивость (но отнюдь не навязчивость), с которой он отстаивает тезис, согласно которому ученый-естествоиспытатель в вопросах науки, пусть даже стихийным путем, но непременно становится материалистом. Достаточно вспомнить беседу Паскаля с Митоном (четвертое письмо).
    На мой взгляд, Реньи удалось создать превосходное и глубокое философское произведение. Оно волнует читателя и позволяет ему ознакомиться с особенностями эпохи, литературным стилем великого ученого-гуманиста Блэза Паскаля и с теми противоречиями, которые раздирали его, ибо в нем причудливо сочетался глубокий мыслитель и исследователь Природы и одновременно фанатически религиозный человек. Реньи знаком со своеобразием литературного стиля Паскаля и в вымышленных письмах тонко ему подражает, широко используя характерные для последнего длинноты и многократное возвращение к одному и тому же предмету обсуждения. При этом вся небольшая книга основана только на тех произведениях, которые волновали в ту пору научные и литературные круги. И в то же время затронутые в письмах вопросы глубоко современны и постоянно возникают в том или ином виде и теперь - как в философских и математических трактатах, так и в университетских лекциях и на диспутах ученых. Подход, избранный Реньи, позволил ему показать тот тяжкий путь, который проходит человечество от незнания к знанию и от знания неполного к знанию более полному.
    Нельзя не отметить и превосходных литературных находок автора: письма Труверьена (Ничего-не-нашедшего) не случайно присланы из Химеры первого апреля, а сам Труверьен является профессором Университета Контеблэ (Голубая сказка).

Тема последней книги «Трилогии о математике» - «Записки студента по теории информации» - относится уже к сегодняшнему дню математики. Первые шаги теория информации сделала каких-нибудь сорок лет назад, но черты развитой отрасли науки ей придали лишь десятилетие спустя Клод Шеннон и другие исследователи. С тех пор теория информации бурно развивается, одновременно находя применение в самых разнообразных областях знания.
    В «Дневнике» Реньи стремился как бы проанализировать процесс познания и показать молодежи и преподавателям необходимость и важность глубокого осмысления новых идей и понятий на привычных представлениях. Нельзя говорить, что что-то изучено, если оно не подвергнуто внутреннему переосмыслению, если изучающий не попытался разобраться в свежих идеях на доступных ему примерах, с которыми он сроднился, которые ему близки и позволяют с неожиданной стороны осветить новые представления. Мнимый автор «Дневника» старается осмыслить идеи и понятия теории информации, прибегая к широкоизвестной игре в отгадывание задуманного слова по нескольким вопросам. Эта игра сопровождает все рассуждения Бонифация Доната и позволяет читателю свыкнуться с основными понятиями теории информации.
    Отдельные замечания Бонифация Доната касаются педагогического процесса. Реньи сумел посмотреть на него не с позиции обучающего, а с позиций обучающегося. Именно этим объясняется тот факт, что Бонифаций Донат после каждой лекции, стремясь вникнуть в ее содержание, неизменно обращается к игре «Бар-Кохба». Он сам задает себе вопросы по поводу услышанного и постепенно находит на них ответы. Такой метод позволяет не только лучше усвоить материал лекций, но и выработать свой собственный подход. Познание становится активным.
    Этот момент следует учитывать каждому преподавателю. Ведь нередко случается, что во время занятий учащиеся о чем-то переспрашивают и в ответ на свой вопрос слышат те же слова, что и прежде. Как правило, это происходит не от того, что они их не расслышали первоначально, а просто по какой-то причине сказанное не дошло до их сознания. Что же может добавить повторение того, что уже не было понято? Вот почему при повторном объяснении непременно следует найти новые слова, новый аспект подачи, который пробил бы путь к сознанию учащегося.
    А вот что написал наш студент о манере изложения профессора: «Насколько я могу судить, наш лектор придерживается метода, состоящего в постепенном разъяснении сложных понятий. …Этот метод (хотя он и необычен) - обладает неоспоримыми преимуществами, главное из которых состоит в том, что он приучает аудиторию мыслить самостоятельно, критически».
    Несомненно, что основная цель обучения состоит не в том, чтобы набить память учащегося возможно большим количеством знаний, а в том, чтобы научить его мыслить, находить подход к решению вопросов, на которые еще нет ответа, замечать пробелы как в собственных, так и в чужих рассуждениях и восполнять их. И это следует делать на всех ступенях обучения - от детского сада до аспирантуры, до самостоятельного совершенствования знаний.
    Очень интересны и своевременны суждения Бонифация Доната об экзаменах. Поскольку эти мысли в какой-то мере близки моим собственным, которые я неоднократно высказывал как в частных беседах, так и на ученых советах, я надеюсь, мне не поставят в вину цитату: «В последнее время много говорилось о необходимости сократить число экзаменов. Думаю, что основная беда все же не в числе экзаменов, а в их характере. На мой взгляд, экзамены должны быть не отчетом студентов о том, что они успели наспех выучить в последние дни перед экзаменом и что затем почти бесследно изгладится из их памяти при подготовке к очередному экзамену, а проверкой умения мыслить самостоятельно и выявления той части знаний, которая навсегда запечатлена в сознании экзаменуемого…».
    Размышления Бонифация Доната о том, чему следует учить в университете, заслуживают самого пристального внимания, поскольку в наши дни математики занимаются не только научной и педагогической работой в области самой математики. Значительная часть выпускников математических факультетов идет работать в заводские лаборатории, в нематематические институты, и несомненно, что подготовка в университете должна облегчить им вхождение в прикладную тематику. Показать математику в действии как элемент познания процессов природы, экономики и техники - вот один из обязательных элементов университетского обучения математике.
    Однако не педагогические проблемы главное в последней работе Реньи.
    «Дневник» посвящен выяснению основного понятия теории информации - количества передаваемой информации. Форма, к которой прибегнул автор, своеобразна и удивительно интересна, и можно только сожалеть, что преждевременная смерть не позволила завершить книгу. Это сделали его ученики и друзья.

В настоящий сборник включены также четыре статьи А. Реньи. Одни из них и задуманы были как научно-популярные очерки, другие родились из докладов на международных конференциях. Но какую бы задачу ни ставил перед собой автор, форма их неизменно остается доступной широкому кругу читателей, а существо касается основополагающих сторон рассматриваемых вопросов.
    Азартные игры были предметом многочисленных серьезных математических исследований. В истории науки они неоднократно сообщали первичный толчок появлению новых научных идеи. Лет пятнадцать назад в печати появились сообщения об одном молодом математике, который нашел стратегию, неизменно приводящую его к выигрышу. В очерке «Азартные игры и теория вероятностей» Реньи рассказывает об этом эпизоде. Для нас здесь интересен не столько факт открытия выигрышной стратегии для вполне определенных условий, сколько средства, позволившие это сделать, - то, как научное мышление при точной формулировке задачи помогает находить целесообразную линию поведения. Свою задачу автор видит в том, чтобы пробудить у читателя потребность во всех жизненных ситуациях находить оптимальное решение.
    Вопросы, затронутые в «Заметках о преподавании теории вероятностей», сейчас интересуют очень многих, и весьма полезно узнать мнение на этот счет крупного ученого и педагога.
    Однако наряду с тремя основными целями, которые автор считает необходимым преследовать в преподавании теории вероятностей, следует отметить еще одну, быть может важнейшую, - расширение представлений обучающихся о закономерностях, с которыми приходится сталкиваться при изучении окружающего нас мира.
    Литература о числах Фибоначчи огромна. А. Реньи в «Вариациях на темы Фибоначчи», отправляясь от классической задачи, дает еще четырнадцать дополнительных интерпретаций, освещая числа Фибоначчи с новых, а порой и неожиданных позиции.
    Очерк «О математической теории деревьев» посвящен важной дисциплине прикладной математики - теории графов, точнее, одному из ее разделов - теории «деревьев». Он был подготовлен в качестве доклада на традиционных Роуз-болловских чтениях в Кембридже. Реньи вводит читателя в круг исследований, которые тесно связаны с многими областями естествознания, теорией информации, исследованием операций, и показывает прикладные возможности теории деревьев.
    В настоящем издании переводы произведений Реньи осуществлены разными лицами. «Диалоги о математике» впервые увидели свет на английском языке, и именно с этого издания был сделан русский перевод Д. Б. Гнеденко и Е. А. Масловой (М.: Мир, 1969). Вышедшее впоследствии венгерское издание несколько отличается от английского. Перевод его осуществил Ю. А. Данилов. Советскому читателю предлагается объединение обоих этих вариантов, поскольку так удалось с наибольшей полнотой выразить замысел автора. «Письма о вероятности» переведены с венгерского Д. Саасом и А. Крамли в бытность их аспирантами МГУ (М.: Мир, 1970). Перевод с венгерского «Дневника» и статей выполнен Ю. А. Даниловым. Переводчики с любовью отнеслись к авторскому тексту, и я надеюсь, что советский читатель сможет по достоинству оценить не только содержание и форму произведений Реньи, но и их труд.

Б. Гнеденко

Реньи А.
Трилогия о математике. (Диалоги о математике. Письма о вероятности. Дневник. - Записки студента по теории информации.) Пер. с венгер. / Под ред. и с предисл. акад. АН УССР проф. Б. В. Гнеденко. - М.: Мир, 1980. 376 с. с ил. (В мире науки и техники)

Rényi Alfréd

Dialógusok a matematikáról
Akadémiai Kiadó, Budapest, 1967

Levelek a valószínűségről
Akadémiai Kiadó, Budapest, 1969

Napló az információelméletről
Gondolat, Budapest, 1976

В сборник включены основные научно-популярные произведения известного венгерского математика Альфреда Реньи: «Диалоги о математике», «Письма о вероятности», «Дневник. - Записки студента по теории информации», а также четыре статьи: о теории вероятностей, о ее преподавании, о числах Фибоначчи и о математической теории «деревьев».
Издание рассчитано на широкий круг читателей.

OCR: fir-vst, 2015

Реньи, ученый, студенты, Венгрия, информатика, библиография, наука, компьютер, ocr, образование, библиотека, университет, читать, математика

Previous post Next post
Up