Есть такая весёлая фраза в одной книге. И далее: «А поскольку кроме воздуха и бензина в двигателе ничего нет, то энергоносителем является воздух».
Когда мой высокопоставленный тёзка сказал чиновникам «
еще неизвестно, где через соответствующий период времени мы окажемся с нашими углеводородами», я не думал, что его фигуру речи надо воспринимать так буквально и скоропостижно.
Я тут вспомнил про книгу, которую скачал полтора года назад, начал читать, но потом замотался и забыл про неё:
Андреев Е.И. Основы естественной энергетики. - СПб.: издательство «Невская жемчужина», 2004. - 584 с
(в pdf есть, например,
тут, или
тут, и ещё много где).
Книга очень объёмная, и основной упор в ней делается на принципиально другой подход к рассмотрению процессов горения, когда энергоноситель - кислород, а топливо является лишь поставщиком электронов для горения. Идея в чём-то аналогична процессу взрыва кислородного баллона (если при сварке вдруг загорается кислородный шланг и догорает до редуктора на баллоне), только эта идеология направлена в «мирное русло». В итоге даже модифицировали и перенастроили двигатель в «Жигулях», чтобы они ездили почти на одном воздухе (на переобеднённой смеси), потребляя лишь ничтожное количество топлива.
Теория в начале книги занимает 80 страниц, и понять её с высшим техническим образованием вполне можно, но надо хорошо покурить. Чтобы не ломать свой мозг, можно это пропустить и изучать книгу дальше - её ценность в том, что собрано огромное количество материала о разных «чудесах» в энергетическом смысле, и не только про горение.
Я сделал небольшой дайджест из этой книги, кого заинтересует тематика - можно будет изучать оригинал. Тем более, что там нормальный текст, а не скан:
А. Чернетский /13/ проводил опыты на обычном трансформаторе без изменения его конструкции, но с включением в контур конденсаторов и разрядника. При этом удалось получить избыточную электрическую мощность в 10…15 раз выше первичной, затраченной. В одном случае вследствие обратного тока вышел из строя трансформатор на промышленной подстанции.
В Оренбурге на одном из предприятий были переоборудованы серийные трехфазные трансформаторы ТМ-40 10/0,4 кВ так, что стали потреблять из сети в 10 раз меньше электроэнергии при той же, номинальной (40 кВт), мощности, выдаваемой потребителю /14/. Вторичные обмотки были сняты и заменены на пластинчатые спиральные, состоящие из трех частей пластинчатых спиралей, соединенных последовательно по три на каждой фазе. Общее количество витков алюминиевой пластины шириной 120 мм и толщиной 0,3 мм и сечение было таким же, как у проводов вторичной обмотки (соответственно: 106 витков и 32 мм2). Можно применять также медную, латунную ленту. Размер ленты и количество частей обмотки на фазе были подобраны не сразу, а с третьей попытки экспериментально.
[...]
При включении в электросеть электродвигателя (индуктивность) и специально подобранных конденсаторов (емкость) Мельниченко /15/ удавалось получить в 10…15 раз большую мощность на валу двигателя, чем потребляемую из сети. Были исследованы много типов двигателей, выдававших избыточную мощность.
[...]
Ярмо трансформатора - генератора выполнено из постоянного магнитного материала в виде ярма для трехфазного трансформатора. На крайние сердечники намотаны силовые катушки (обмотки). Из среднего сердечника постоянный магнитный поток разветвляется влево и вправо по магнитопроводам ярма, включая крайние сердечники, и замыкается снова на средний. Слева и справа от среднего сердечника на магнитопроводы намотаны катушки управления. Переключая их поочередно создают магнитный противоток основному потоку, ударную магнитную волну с частотой 87,5 кГц, которая взаимодействует с электринным газом окружающей среды и обеспечивает их переток в силовые обмотки, то есть подкачку энергии извне. Генератор работает автономно. К серийному выпуску по заявлению Бердена подготовлен генератор мощностью 2,5 кВт.
[...]
Вечная лампочка А.Ю.Кушелева с двенадцатью сферами-резонаторами из сапфира диаметром каждая 8 мм, эквивалентная электролампочке накаливания мощностью 185 Вт (2002 год).
Систему из 12-ти резонаторов (по четыре «крест-накрест»), соединенных проводящими шевронами, А.Кушелев раскачивает с помощью лампы бегущей волны до частоты 34…36 ГГц, когда их собственная частота начинает совпадать с частотой колебаний атомов. Система вспыхивает как лампочка в оптическом диапазоне частот перетока электрино, после отключения лампы бегущей волны не требуя энергии извне на свое свечение, так как энергия потребляется из окружающей среды в режиме резонанса, а задатчиком колебаний являются атомы кристаллической решетки сапфира. Сам набор 12-ти сфер является набором соединенных электрически резонаторов со сдвигом фаз между ними на 90°. Диаметр сфер подбирается эмпирически так, чтобы собственная частота лучше соответствовала частоте атомов.
Американцы тоже зажигали лампочку из двух сфер диаметром 2 мм, даже раньше А.Кушелева, но она не была вечной. Для равномерности колебаний всего объема и поверхности сферы требуется ее прецезионное изготовление и изотропность свойств. Раз зажженные и негаснущие лампочки А.Кушелева могут храниться в стеклянных или в металлических (для экранирования СВЧ излучения) банках.
[...]
Чем полнее резонанс частоты собственных колебаний энергоустройства с частотой задатчика (атома), тем выше амплитуда потока электрино и меньше энергозатраты на привод задатчика, вплоть до их исключения при полном резонансе. Этим, например, воспользовался Кушелев, который зажег вечную лампочку /3/. Соломянный Р.Е. токами высокой частоты возбудил колебания пьезокристалла до состояния резонанса с собственными атомами, что позволило обеспечить длительную работу энергоустройста как источника электрической энергии, непосредственно снятой с пьезокристалла /18/. Мощность была невелика 30 Вт, но она была постоянной в течение трех месяцев. В дальнейшем при увеличении частоты в исследовательских целях пьезокристалл разрушился. Отмечалось влияние токов высокой частоты вокруг энергоустановки.
[...]
При работе трансформаторов, генераторов, двигателей в электросети с промышленной частотой 50 Гц, выдающих потребителю избыточную мощность, на синусоиду промышленного тока (напряжения) должна накладываться высокочастотная составляющая тока (напряжения) подкачки энергии из окружающей среды. Влияние этих излучений на людей и технику не изучено. Поэтому к таким опытам следует относиться с осторожностью, в перспективе необходимо изучить процессы и разработать меры безопасности при эксплуатации указанных электроустановок.
[...]
Энергоустановки, работающие на свободной энергии (окружающего пространства), - это пока экзотика, в том смысле, что даже те, которые реально работают (установки Серла, Флойда; вечные лампочки Кушелева и другие) - не прошли всесторонней проверки, в первую очередь, экологических свойств, в результате не только научных исследований, но и, в основном, в результате многолетней эксплуатации как автомобили и теплогенераторы. К примеру, двигатели и электрогенераторы Серла известны уже, как реально работающие, более полувека, но к использованию непригодны по вредным воздействиям на человека и окружающую среду.
А это похоже на конструкции Виктора Шаубергера, который делал это гораздо раньше товарища Клема:
Примером гидравлического самовращения является мотор Клема /32/. Клем заметил, что насос, перекачивающий жидкий асфальт, после его отключения от электросети продолжает работать еще некоторое время - до 30 минут. Это наблюдение привело к изобретению (патент США 3697190, 1972 г.). В результате сделанных преобразований мощность мотора достигла 350 лошадиных сил (260 кВт) при весе 200 фунтов (90 кг). По свидетельствам очевидцев Клем сам ездил на машине со своим двигателем. Он заявлял, что машина не требует топлива. Необходимо было менять в моторе масло каждые 150 тысяч миль. Единственным традиционным источником электропитания была 12-вольтовая батарея.
Мотор имеет одну движущуюся часть: вертикальный конический ротор с полым валом для циркуляции масла внутри него. В конусе, расширяющемся к низу, вырезаны спиралевидные желобки в виде прямоугольной резьбы, проходящие вокруг него по всей высоте. По мере увеличения диаметра конуса глубина желобков уменьшается. Между ротором и корпусом мотора имеется зазор, который регулируется осевым подъемом ротора на минимальный размер для предотвращения обратного перетока масла вверх по зазору под действием развиваемого давления. Позже на выходе из желобков были добавлены сопла.
При пуске ротор раскручивается стартовым масляным насосом. ... Достигнув определенной скорости вращения, конус становится независимым от стартерного насоса и начинает работать самостоятельно и как насос и как мотор. При этом забор масла осуществляется через полный вал, который нижним концом опущен под уровень масла в емкости. При рабочей скорости вращения 1800-2300 об/мин жидкость нагревается до 300 F (250°С) - именно поэтому использовалось растительное масло вместо воды, которая при этом закипает. Масло охлаждается в теплообменнике, то есть мотор может работать и как теплогенератор.
Это ближе к теме горения:
Такие экспериментальные работы проводил, например, Козлов В.Г. в конце 90-х гг. ХХ века /27/. Так называемую легкую воду получали последовательными операциями, например, сначала - как «живую» воду (щелочную, отрицательно заряженную) при электролизе через полупроницаемую мембрану, скапливающуюся на положительном электроде (катоде). Затем эту воду, разлитую тонким слоем, подвергали ультрафиолетовому излучению (катализ) и, далее, банку с водой помещали в три стеклянных сосуда с обычной водой (один в другом) для экранирования от внешних воздействий, в том числе, от действия геомагнитного поля. В сосуде вода выдерживалась некоторое время и окончательно приобретала свойства легкой воды. [...]
Легкая вода горит на открытом воздухе, и после всего сказанного это не кажется необычным. При ее поджигании (спичкой, как и углеводородного топлива) происходит отсоединение электронов с положительными ионами.
На автомобиле «Жигули» ездили на легкой воде вместо топлива.
[...]
В настоящее время виброрезонансные устройства применяются, например, для тонкого смешивания разных жидкостей, которое дает фактически новую молекулу нового вещества. Так, смешивание бензина с водой дает новое топливо, которое не расслаивается и обладает той же теплотворной способностью, что и бензин.
[...]
Обе машины прошли опытно-промышленные испытания и на практике показали свои преимущества по сравнению с существующими агрегатами. Что до эмульсии, то она не расслаивалась в связи со смешением на молекулярном уровне, а ее теплотворная способность при смешивании 50% бензина и 50% воды равнялась теплотворной способности бензина. Продолжатель дела Нетеса Ю.Д. на этой основе создает диспергаторы и кавитаторы, в том числе, для кавитационного теплогенератора с коэффициентом избыточной мощности не менее 10. Устройство кавитатора описано в первой книге на стр.93-94. Оно не сложно и представляет шток с несколькими плоскими поршнями, размещенный в цилиндре с плоскими перегородками, имеющими отверстия для перетока среды, и подключенный к приводу.
А это уже про работу автора книги, когда модифицировали двигатель и сделали чудо-Жигули, которые ездят на воздухе:
В последние пять лет появились реально работающие энергоустановки с ФПВР, в которых происходит частичное расщепление воздуха или воды. Так в двигателях внутреннего сгорания (ДВС) был получен режим работы, при котором расход топлива (бензина) уменьшается до 5…6 раз, и соответственно возрастает мощность. В составе выхлопных газов ДВС обнаружено повышенное содержание водяного пара, углерод в виде мелкого графита, кислород, и пониженное содержание азота и углекислого газа /1/.
Поскольку в воздухе, идущем на горение в ДВС, кроме кислорода и азота ничего нет, то снижение расхода органического топлива происходит за счет вовлечения в горение азота, на что указывает снижение содержания азота в выхлопных газах. Для этого необходимо каким-либо инициирующим воздействием разрушить молекулу азота хотя бы на атомы или более мелкие фрагменты. Это достигается электрическим разрядом, магнитным потоком, взрывом и другими средствами, на которые энергии затрачивается на несколько порядков меньше, чем её получается в ФПВР. Причем такой азотный режим работы и горения идет с окислением до H2O, а не до CO2, что энергетически и экологически более эффективно.
[...]
Разработка теории /1, 2/ заняла семь лет, практическая работа, в первую очередь, на карбюраторных автомобильных двигателях, - еще три года. Впервые бестопливный режим работы двигателя (на холостом ходу) был получен 25 июля 2001 года. Понадобилось еще более одного года, чтобы 25 августа 2002 года на автомобиле ВАЗ-2106 был получен бестопливный режим самогорения воздуха в цилиндрах двигателя при движении автомобиля с нагрузкой и скоростью 120 км/час. Расход топлива определялся оперативно с помощью серийно выпускаемого штатного путевого компьютера и датчика расхода топлива, установленных непосредственно в автомобиле. Показания расхода топлива датчиком и компьютером контролировались периодически объемным способом...
На основных режимах движения автомобиля:
- со скоростью 60…70 км/ч и числом оборотов двигателя 2000…2500 об/мин.;
- со скоростью более 70 км/ч и числом оборотов двигателя более 3500 об/мин.;
- а также на холостом ходу с числом оборотов двигателя 200..1500 об/мин.
расход топлива отсутствовал совсем, был нулевым. При пуске и прогреве двигателя, а также - на переходных режимах и перегазовках имел место кратковременный расход топлива такой, что в среднем при общем пробеге более 7000 км он составил 1.0…1.5л/100км пути. Режим бестопливного горения обеспечивался обработкой воздуха и настройкой карбюратора на бедную смесь без каких-либо изменений конструкции двигателя.
[...]
То, что горит не топливо, а кислород, было ясно достаточно давно /1/. Этому способствовали следующие факты: взрыв воздуха в фокусе лазерного луча; взрыв чистого кислорода при наличии только следов углеводородов; электрический разряд (искра, плазма, шаровая молния - это тоже горит воздух). Но впервые роль топлива как донора электронов была установлена Д.Х.Базиевым /5/. Еще раз было подтверждено, что горит не топливо, а, в первую очередь, кислород воздуха. Но если горит не топливо, то можно от него избавиться?! Был разработан способ исключения топлива как компонента горения путем использования электронов связи самого воздуха. В этом и была главная задумка автотермии - самогорения воздуха, чего Базиев в своих книгах /5-7/ не заметил, прошел мимо бестопливного горения. Впервые разработки по бестопливному горению были опубликованы в /1/ и встречены Базиевым скептически как потеря времени.
[...]
Для интересующей нас реакции горения при минимуме топлива (переобедненная смесь) лучшим является диапазон малых концентраций топлива слева от минимума энергии искры, так как малое количество электронов не будет «душить» реакцию горения, и в то же время малое количество топлива облегчит зажигание по сравнению с его полным отсутствием. Здесь целесообразно адресное микродозирование топлива непосредственно в зону искры, о чем речь пойдет ниже.
[...]
Если в обычном термическом топливном режиме топливо нужно, и оно воспламеняется затем по всему объему цилиндра, то в автотермическом бестопливном режиме во всем объеме цилиндра работает не топливо, а предварительно обработанный в оптимизаторе воздух. Топливо, если и нужно для облегчения зажигания, то совсем немного и с подачей адресно в микрозону начала воспламенения, в зазор между электродами свечи.
[...]
Устройство для обработки воздуха условно назвали оптимизатором, не подобрав лучшего наименования. Обработка воздуха при пропускании его в воздушном зазоре между полюсами магнита осуществляется, во-первых, магнитным потоком.
[...]
Были опробованы постоянные магниты на основе ферритов железа, ферритов стронция, самарий-кобальта, неодима-железа-бора, а также - электромагниты. В принципе все они дают возможность получить эффект автотермии - бестопливного самогорения воздуха. Но столько привходящих факторов, влияющих на выбор (значение индукции насыщения, другие магнитные свойства, стоимость, доступность, конструкция и условия использования…), что трудно сказать каким магнитам отдадут предпочтение при серий-ном производстве. Катализаторами, размещенными в зазоре между полюсами магнита (в магнитном поле), могут быть практически все металлы 6-го периода таблицы Менделеева, а также - другие химические элементы и соединения, обладающие каталитическими свойствами. При этом следует иметь ввиду, что чрезмерное усиление разрушительной способности оптимизатора, может привести к возгоранию и взрыву воздуха, что преждевременно, так как эти свойства нужны при внутрицилиндровом воздействии, а не при доцилиндровой обработке воздуха, да и опасны, как все взрывы и воспламенения.
[...]
В современных автомобилях искра слабенькая, с энергией примерно 30 мДж (миллиджоулей). Это вызвано тем, что присутствие топлива в обычных автомобилях облегчает воспламенение воздуха и в большей энергии искры нет необходимости. Для автотермического бестопливного режима воспламенения воздуха, даже предварительно обработанного, надо еще постараться разбить межатомные связи как кислорода, так, желательно, и азота, и для этого, по ориентировочным расчетам требуется энергии примерно 1.0 Дж, то есть ~в 30 раз больше, чем в обычной слабой искре. Кроме того, обычно воспламенение происходит с одной стороны цилиндра, где находятся электроды свечи зажигания. Неравномерность давления, вызванная такой асимметрией, приводит к перекосу поршня, потерям на трение и другим отрицательным обстоятельствам, снижающим эффективность двигателя. Для увеличения энергии искры, равномерности воспламенения топлива в камере сгорания цилиндра двигателя рекомендуются изготавливаемые серийно свечи зажигания с конденсатором - накопителем энергии и конусным распределителем факела, либо форкамерно-плазменные свечи зажигания с малой форкамерой, имеющей форму сопла Лаваля, либо другие подобные свечи зажигания. Они облегчают получение режима бестопливного горения воздуха.
[...]
Форсунки с капельной подачей топлива к электродам свечи разработаны, например, Ю. Поповым /21/. Они были изготовлены и испытаны в количестве более двух десятков штук. Так же по имеющейся информации (журнал «Пикап», 2003 г.) автомобильные фирмы, в том числе Мерседес и Тайота, разрабатывают устройства для создания переобедненной смеси. Указывается, что достигнуто соотношение топливо - воздух 1:40…1:50. Во-первых, это многовато, нужно еще меньше. Во-вторых, без дополнительной доцилиндровой и внутрицилиндровой обработки воздуха бестопливный (точнее близкий к бестопливному) режим не будет получен. Автотермический режим с малым расходом топлива начинается ориентировочно при соотношении топливо - воздух менее 1:100. А мы на автомобили ВАЗ-2106 ездили при соотношении 1:600 и менее.
[...]
Практика показывает, что повышение оборотов способствует наступлению азотного цикла, не совсем бестопливного, но уже с участием не только кислорода, но и азота в горении. Внешними визуальными признаками этого режима являются следующие:
- много воды в виде пара на выхлопе;
- отсутствует запах выхлопных газов;
- низкая 50-60°С температура выхлопной трубы, так что за нее можно держаться голой рукой;
- мягкая бесшумная работа двигателя;
- снижение температуры охлаждающей двигатель жидкости на 10-15°С;
- с помощью индикатора качества смеси (ИКС) видно искру на черном фоне беспламенного «холодного» горения;
- ручка переключения скорости становится неподвижной, не дрожит, как обычно.
Это все свидетельствует о пониженном давлении и температуре в цилиндрах двигателя. При этом его мощность не только не снижается, но и возрастает, что является следствием усиленной диссоциации воздуха, вплоть до нуклонов, как указывалось выше на примере золота /7/. Вот откуда еще один источник единичных элементарных атомов, то есть атомов водорода, для образования воды в большом количестве, визуально и инструментально определяемом на выходе из выхлопной трубы. Если построить примерную индикаторную диаграмму работы двигателя в азотном частично автотермическом режиме с учетом большого опережения угла зажигания (начала горения), диссоциации и плавного нарастания и снижения (меньшего по максимуму) давления, обратной продувки цилиндров повышенным более атмосферного давлением выхлопа с отжиманием и отсеканием топлива в карбюраторе от отверстий его подачи в первичной и вторичной камерах, то такая уточненная эпюра совмещенных в двигателе давлений 4-х цилиндров (для ВАЗ-2106) показывает, что огибающая кривая давлений - почти постоянная. Вот почему не дрожит ручка переключателя скорости, а работа двигателя бесшумна, по сравнению с обычным двигателем, для которого индикаторная диаграмма имеет достаточно острый пик, совокупность которых и дает дрожание конструкции и ручки.
[...]
Как и обычное горение, автотермический режим является атомной реакцией, в результате которой элементарные частицы - электрино отдают свою кинетическую энергию плазме горения, нагревая ее путем контактных соударений или электродинамического взаимодействия с другими участниками процесса. При этом в микроколичествах образуются некоторые химические элементы, которые тут же частично окисляются и выбрасываются с выхлопными газами (не пугайтесь, - этот процесс идет точно так же и при обычном горении). Ряд нестабильных изотопов работают как катализаторы горения. При стационарных режимах работы двигателя соблюдается равновесие между выделением энергии в камерах сгорания и ее потреблением в двигателе.
На переходных режимах работы двигателя наблюдается неожиданная специфика, которая заключается в следующем. Когда вы нажимаете педаль газа и открываете заслонки для подачи воздуха в цилиндры, то двигатель набирает обороты и мощность. Но педаль можно нажать очень быстро, а двигатель набирает обороты, преодолевая инерцию, не сразу, а постепенно. Это рассогласование по времени между началом усиленной реакции горения в камере сгорания и началом периода установившихся оборотов двигателя после их набора приводит к избытку невостребованной энергии скоростных электрино во время переходного периода и перегазовок. Невостребованные скоростные электрино образуют радиоактивное мягкое рентгеновское излучение, которое распространяется за пределы камеры сгорания на 0.5…1.0 м; в салоне его нет. Практически излучение наблюдается вблизи камер сгорания, а его уровень достигает значения, превышающего фон в 10…400 раз, например, 4000 мкР/ч. Этот уровень, превышающий допустимый, хотя и локально и кратковременно, следует учитывать при проведении работ или размещении водителя непосредственно на двигателе, вблизи него.
Но самое, пожалуй, неожиданное для людей, незнакомых с теорией, в том что импульсы такого же уровня излучений характерны не только для автомобилей с автотермическим режимом горения, но и для автомобилей с обычным режимом горения топлива. При этом, чем больше мощность двигателя, тем уровень и жесткость излучения больше. Длительность импульса определяется, как указано, периодом рассогласования времени нажатия педали газа и раскрутки двигателя до установившихся оборотов. Отсюда возникает и мера для исключения импульса излучения - медленное нажатие педали, хотя сам период настолько мал, а импульс сразу после набора оборотов пропадает совсем, что его, видимо, можно и не учитывать. В остальных режимах радиоактивность вокруг и в салоне автомобилей и с обычными и с автотермическими режимами лишь немного превышает фон и находится в пределах допустимых норм.
Излучение с частотой выше оптического диапазона точно так же наблюдается и в обычных двигателях, и при взрывах, и - на лазерном луче. При взрывах специально никто не измерял, но отмечают большие наводки на различных датчиках, а также - засветку кино- и видеопленки в момент движения детонационной волны по зоне взрыва: начало и конец взрыва нормально фиксируется в оптическом диапазоне, а в краткий миг прохода детонационной волны, например, 10 мс, засветку во весь кадр дает излучение в надоптическом диапазоне (ультрафиолетовое, рентгеновское и гамма излучения). При взрыве воздуха в фокусе лазерного луча в краткий миг импульса, например, 2мкс, непокрытые одеждой кожные покровы людей, находящихся вблизи вспышки, получают ожоги, как при загаре за целый день. Все это подтверждает, что энерговыделение (ФПВР) - это атомный процесс, сопровождающийся излучением скоростных электрино.