Тема V
ЛИПИДЫ И МЕМБРАНЫ
В отличие от белков или углеводов, липиды не имеют никакой общей формулы. Это просто собирательное название всех гидрофобных биологически активных соединий. Вот, например, холестерин, спирт с огромной гидрофобной частью. Его производные - стероидные гормоны, которые вырабатываются у человека корой надпочечников и половыми железами. Все они относятся к липидам.
Заодно начнем привыкать к тому, что такие сложные формулы, как правило, не рисуют целиком, до каждого атома. На подобной формуле любой уголок обозначает атом углерода, у которого все свободные валентности по умолчанию заполнены атомами водорода. А если убрать единственную здесь двойную связь, то оставшееся ядро из четырех колец (трех шестиугольников и одного пятиугольника) будет называться замечательным словом “циклопентанпергидрофенантрен”. Это и есть основа для создания разнообразных стероидов, формулами которых загромождать изложение не будем.
Другая важная группа липидов - жирные кислоты, то есть карбоновые кислоты с длинными (10-20 атомов углерода и больше) углеводородными “хвостами”. Чем длиннее “хвост”, тем хуже кислота растворяется в воде. Жирные кислоты, у которых в цепочке более 12 атомов углерода, называют высшими.
Жирные кислоты бывают насыщенные (без двойных связей в углеводородной цепочке) или ненасыщенные (с двойными связями). Насыщенные высшие жирные кислоты при комнатной температуре - твердые вещества, а ненасыщенные - жидкости. Связано это с более компактной упаковкой насыщенных "хвостов", в которых нет создаваемых двойными связями изломов и изгибов.
Несколько примеров жирных кислот: линолевая, олеиновая, пальмитиновая, стеариновая, линоленовая. Ненасыщенные жирные кислоты особенно распространены у растений (например, в растительных маслах).
У насыщенных жирных кислот "хвосты" прямые, у ненасыщенных изогнутые в местах двойных связей. Из-за этого молекула может приобрести причудливую форму, особенно если двойных связей несколько. На картинке - модель молекулы линоленовой кислоты, у которой в "хвосте" три двойных связи.
В водном растворе молекулы жирных кислот и их солей образуют мицеллы - шарообразные скопления, где гидрофобные “хвосты” обращены внутрь, минимизируя контакт с водой, а гидрофильные “головки” - наружу, поскольку они-то взаимодействуют с водой хорошо. Это довольно обычное поведение вещества, в молекуле которого есть одновременно гидрофобная и гидрофильная группы.
Жирные кислоты, а вернее их соли, постоянно используются человеком в качестве моющих средств. На картинке - один из самых распространенных компонентов мыла, стеарат натрия (соль стеариновой кислоты). Четко выделена гидрофильная головка, а остальная часть молекулы представляет собой гидрофобный хвост.
Механизм моющего действия мыла следующий. В сосуде слева молекулы мыла просто образуют мицеллу. В сосуде справа они растворяют свои углеводородные хвосты в капле “грязи” (которая, как правило, гидрофобна) и разбивают ее на мелкие капельки, которые легко смыть. Вещества с такой активностью называются детергентами.
Детергенты бывают очень разными по химической структуре; их гидрофильные части могут быть положительно заряженными, отрицательно заряженными или вовсе незаряженными, а просто полярными. Но молекула любого детергента обязательно включает гидрофобный "хвост" и гидрофильную "головку". Довольно много соединений такого типа входит в состав живых организмов.
Вспомним, что любая карбоновая кислота может образовать с любым спиртом сложный эфир. При этом от кислоты отщепится -OH, от спирта -H, они образуют воду, а остатки кислоты и спирта замыкаются в единую молекулу со сложноэфирной группой -CO-O- посредине. Спиртом, участвующим в этой реакции, вполне может быть и глицерин, у которого гидроксильных групп три. Сложный эфир глицерина и трех жирных кислот называется жиром.
Типичный пример жира, в данном случае ненасыщенного (из трех остатков жирных кислот ненасыщенных тут два). Растительные масла - жидкие, потому что в них больше ненасыщенных жиров, чем у животных. Хотя в целом и насыщенные, и ненасыщенные жирные кислоты есть и у тех и у других, различается только их вклад.
Жиры - ценные источники энергии, именно поэтому они часто запасаются в клетках соединительной ткани у животных, как вот, например, у суслика.
А теперь познакомимся с еще одним важным для нас соединением - фосфорной кислотой (H3PO4). Напомним, что валентность фосфора - 5. На картинке присутствуют два способа изображения молекулы: графическая формула, игнорирующая пространственное расположение связей, и структурная, показывающая его. Вновь будем иметь в виду, что “фосфорная кислота” и “фосфат” (то есть ее соль) в биохимии практически синонимы, в подавляющем большинстве случаев эти понятия свободно заменяются друг на друга.
Сложный эфир глицерина, двух жирных кислот и фосфорной кислоты называется фосфолипидом. Можно сказать, что фосфолипид - это как бы жир, у которого вместо одного из остатков жирных кислот тем же способом присоединен фосфат. Такая молекула состоит из гидрофильной “головки” (включающей остатки глицерина и фосфата) и двух гидрофобных “хвостов” (жирных кислот). При фосфате бывают еще дополнительные боковые цепи, у разных фосфолипидов разные.
Один из самых распространенных фосфолипидов - фосфатидилхолин. Он приведен только в качестве примера. В других фосфолипидах на месте холина может быть аминокислота серин или что-нибудь еще.
Именно из фосфолипидов в основном состоят клеточные мембраны. Тут используется их физическое свойство: собираться в воде в двойной слой гидрофобными “хвостами” внутрь и гидрофильными “головками” наружу. Замкнутый пузырек, образованный таким двойным слоем молекул, называется везикулой. Вся клеточная мембрана - это в некотором смысле сильно разросшаяся везикула.
На картинке показано, как на границе гидрофильного раствора (вода) и гидрофобного (масло) молекулы фосфолипидов ориентируются хвостами в сторону масла, а головками в сторону воды. Если же никакого масла поблизости нет, то молекулы фосфолипидов располагаются головками в сторону воды, а хвостами друг к другу, и получается двойной слой, который сразу замыкается в везикулу, чтобы не было неустойчивых свободных краев. Это чисто физическое явление, которое запросто может иметь место и вне живых клеток.
Вот схема того, как фосфолипиды "собираются" в клеточную мембрану. Молекула фосфолипида нарисована двумя способами - во всех деталях (в качестве примера тут взят уже знакомый нам фосфатидилхолин) и в виде головки с двумя хвостиками. Таким молекулы собираются в двойной слой хвостиками друг к другу, головками к воде. Справа - простейшая схема участка типичной мембраны.
На самом деле биологические мембраны никогда не состоят только из одних фосфолипидов. Типичная клеточная мембрана - фосфолипидный бислой во встроенными в него интегральными белками, которые обычно являются или рецепторными (принимают сигналы из внешней среды и передают их внутрь клетки), или транспортными (переносят те или иные молекулы с одной стороны мембраны на другую). Часть белка, проходящая сквозь образованный "хвостами" внутренний слой мембраны, как правило, представляет собой альфа-спираль, целиком состоящую из гидрофобных аминокислот, боковые цепи которых торчат наружу. Если белок достаточно сложный, таких альфа-спиралей вполне может быть несколько. Кроме того, к мембранным белкам снаружи часто прикреплены ковалентными связями дополнительные цепочки, состоящие не из аминокислот, а из углеводов. Они бывают нужны в первую очередь для взаимодействия между клетками.
Тут мы видим кое-какие дополнительные детали. Во-первых, кроме фосфолипидов в мембране есть холестерин - его молекулы раскрашены желтым (если сравнить с уже знакомой нам формулой холестерина, видно, что каждая молекула своей гидроксильной группой обращена к воде, а массивной гидрофобной частью внутрь мембраны). Во-вторых, изнутри ко многим интегральным белкам прикреплены элементы цитоскелета - внутриклеточной системы опорных структур, тоже состоящей из белков. Но обе эти особенности есть далеко не у всех клеток.
В целом можно назвать как минимум три основные функции липидов: энергетическая (жиры), структурная (фосфолипиды, холестерин) и сигнальная (стероиды). Но надо иметь в виду, что липиды в силу самой природы этого сборного понятия крайне разнообразны, даже при том, что они (в отличие от белков) не являются полимерами. Мы обсудили далеко не все их группы.