К концу семнадцатого века произошло несколько важных событий не только в совершенствовании микроскопии как средства познания окружающего мира, но также и в целях этого познания.
На заре реставрации королевского дома Стюартов, в лице короля Чарльза II (как будто бы и не было девятнадцати лет протектората семейства Кромвелей), в январе 1665 года, англичанин Роберт Гук (Robert Hooke) -- автор закона, названного его собственным именем (тот самый который звучит «растяжение пропорционально приложенной силе» или как-то так), публикует свой высокоученый и, надо сказать, великолепно иллюстрированный труд «Микрография» (Micrographia) отражающий потрясающе огромный круг интересов Гука.
В этой работе описывается множество различных предметов и явлений, начиная с особенностей и закономерностей отражения и преломления световых лучей в различных средах,
продолжая подробным морфологическим описанием срезов волос, и морфологии искр, получаемых при помощи огнива,
а также некоторых насекомых,
заканчивая снежинками,
кратерами на луне и звездами.
Что интересно, Гук не только описывает микроскопическое устройство, но и проводит параллели между их строением и физическими (физиологическими) свойствами, но эта работа примечательна даже не всеми этими, безо всякого сомнения, достоинствами, а тем, что в этой книге впервые в истории естествознания, описана наименьшая частица, которая может быть названа жизнью - клетка “cellula” и именно в этой книге, она получила свое название, которое осталось за ней по сей день и вероятно, навсегда. Кстати книга чудесно написана, весьма, рекомендую
ознакомиться с чудесным старомодным английским и полюбоваться прекрасными гравюрами. Одно интересное наблюдение, строчные буквы “s” и некоторые “th” в использованном шрифте очень напоминают буквы “f” отчего вся книга кажется, немного шепелявой пока не привыкнешь. Как жалко, что у меня нет достаточно времени, чтобы ее прочесть, наверное, займусь этим, когда стану совсем старым пердуном и смогу ходить только под себя.
Однако мы немного отвлеклись. Микроскоп, который использовал Роберт Гук в общем напоминал остальные, обычные для той эпохи микроскопы. К тому моменту микроскоп претерпел несколько конструктивных усовершенствований и намного больше напоминал известный нам сейчас. Микроскоп состоял из раздвижного тубуса, сделанного из дерева или папье-маше, обтянутого тонкой выделки кожей с тиснением. Тубус был снабжен окулярной чашкой, для того чтобы сохранять необходимую дистанцию между глазом и окуляром, на объективе была устроена резьба, которая также позволяла фокусировать микроскоп поворачивая его в держателе, прикрепленным шарнирным соединением, (позволявшим наклонять тубус) к утяжеленной платформе, на которой находилось острие для фиксации исследуемого образца.
И хотя Гук не изобретал свой собственный велосипед микроскоп, тем не менее, он сделал несколько значительных усовершенствований в отношении его оптического аппарата. Так, Гук использовал двояковыпуклую линзу в объективе и две дополнительных плосковыпуклых линзы, расположенных выпуклыми поверхностями друг к другу, одно размещенное в окуляре, а другое -- в тубусе микроскопа. Линзы в тубусе и в окуляре были съемными и линзу в тубусе микроскопа могла быть извлечена для того, чтобы уменьшив сильные сферические и хроматические аберрации изображения (такие искажения изображения, которые возникают в результате неравного преломления лучей света с разной длинной волны, разными участками линзы), рассмотреть мелкие детали. Линзы в тубусе и в окуляре Гук фиксировал и герметизировал воском, а между ними заливал чистую воду.
Увеличение достигалось значительное кратностью - от 30 до 50 раз, лучшее возможное на тот момент аберрации при этом возникали страшные, представление о том, на что было похоже такое изображение можно получить на этой картинке, при этом также нужно учитывать, что прозрачность линз была довольно далека от совершенства.
Для того чтобы преодолеть такие искажения изображения Гук попытался использовать диафрагму, с крохотным отверстием, помещая ее на оптической оси, для того, чтобы ограничить лучи от краевых отделов линзы, пытаясь таким образом увеличить резкость, до какой-то степени это удавалось, но в таком случае, света просто катастрофически не хватало (следует принять во внимание еще и то, что свет использовался не проходящий, а отраженный), но Гук нашел остроумный выход из этого положения -- надо дать дополнительный свет, БОЛЬШЕ СВЕТА!
Для этого, им была изобретена хитроумная система искусственного освещения, которая располагалась на отдельной стойке отдельно от микроскопа и состояла из масляной лампы, свет от которой фокусировался на объекте исследования при помощи сосуда заполненного водой, и плосковыпуклой линзы.
Но, несмотря на все эти ухищрения преодолеть порог пятидесятикратного увеличения так и не удалось. «Да и хватит с него уже славы» -- подумала дама история и продолжила свой неспешный ход.
Другой интересной и концептуально новой идеей была идея бинокулярного микроскопа, впервые пришедшая в голову монаха Ордена Братьев Меньших Капуцинов в 1670 году отца Д’Орлеаня (Cherubin d'Orléans) серьезно занимавшемся изучением оптики, а также физики зрения и патологии аккомодации (фокусировки глаза), на фото ниже модель глазного яблока, авторство над которым, приписывается ему самому
Его стереомикроскоп обладал не только двумя окулярами, но и двумя объективами...
Он мог выглядеть в оригинале примерно, так как этот бинокулярный телескоп из музея истории науки во Флоренции (хотя учитывая конструктивную схожесть, они могли с легкостью быть взаимозаменены)…
Но этот прибор все же можно было назвать стереомикроскопом весьма условно, его также называют псевдоскоп, имея ввиду особенности получаемого изображения. Напомню, что стереоскопическим изображение получается тогда, когда правый и левый глаз отдельно друг от друга, получают свое собственное, но совершенно одинаковое изображение, но в случае с псевдоскопом отца Д’Орлеаня каждый глаз получал не только немного разное изображение, но также и перевернутое снизу вверх и «вывернутое наизнанку», то есть точки поверхности изучаемого предмета располагающиеся ближе к объективу располагались в получаемом оптическом образе дальше, а те которые ближе, в оптическом образе - дальше в итоге это получалась как бы форма для оттиска рассматриваемого предмета. В общем, ввиду всех этих недостатков, этот несомненно прогрессивный, но несвоевременный концепт, был оставлен еще почти на двести лет до тех самых пор, пока профессор Джон Леонард Риделл (John Leonard Riddell) из далеких как во времени, так и в пространстве Соединенных Штатов, в 1850 году, не додумался разместить две трапециевидные призмы позади линз объектива, которые разделяли оптический образ, полученный одним объективом на два совершенно одинаковых изображения для правого и левого глаза. Но, это уже совсем другая история.
To be continued…