Нарушения формирования соединительной ткани у детей как следствие дефицита магния. 2

Mar 05, 2013 00:11

<< Начало
Молекулярно-биологические механизмы взаимосвязи ДСТ и дефицита магния

Понимание роли магния в поддержании структуры соединительной ткани не отделимо от молекулярно-клеточной структуры соединительной ткани. В молекулярной биологии внеклеточный матрикс (ВКМ) определен как сложная сеть, сформированная многочисленными структурными макромолекулами (протеогликаны, коллагены, эластин). Взаимодействуя друг с другом и с клетками, они поддерживают структурную целостность тканей [8]. Соединительная ткань демонстрирует избыток ВКМ при достаточно небольшом числе клеток. Именно ВКМ помогает держать клетки вместе и обеспечивает организованную среду, в пределах которой мигрирующие клетки могут перемещаться и взаимодействовать друг с другом.

Внеклеточный матрикс состоит из принципиально необходимых компонентов - основного вещества, коллагеновых, эластиновых волокон. Наиважнейший элемент ВКМ - это основное вещество, формируемое протео­гликанами - чрезвычайно растянутыми полипептидными цепями, соединенными с многочисленными полисахаридными молекулами глюкозаминогликанов посредством прочных ковалентных связей.

Многочисленные цепи протеогликанов прикрепляются к особому виду глюкозаминогликана - полимеру гиалуроновой кислоты, называемому гиалуронаном. Нити гиалуронана помогают скреплять структуру основного вещества в единое целое. Это препятствует сжатию и растяжению ВКМ, а также обеспечивает быструю диффузию питательных веществ и гормонов к клеткам соединительной ткани. Гиалуронан синтезируется посредством гиалуронансинтетаз (гены HAS1, HAS2 и HAS3) и деградируется посредством гиалуронидаз (гены HYAL2, HYAL3, HYAL4 и HYALP). Гиалуронансинтетазы HAS1, HAS2 и HAS3 содержат ион магния в активном центре. Дефицит магния приводит к снижению активности гиалуронансинтетаз и, как следствие, к ухудшению механических свойств нитей гиалуронана в основном веществе внеклеточного матрикса [1, 4].

Ферменты, участвующие в биохимических модификациях и присоединении глюкозаминогликанов, также могут значительно влиять на структуру ВКМ. Например, дефицит ксилозил-бета-1,4-галактозилтрансферазы-7 (ген B4GALT7) связан с одной из форм ДСТ - синдрома Элерса-Данло [1] который проявляется склонностью к вывихам, наличием хрупкой или гиперэластичной кожи, хрупких сосудов и т. д. [1].

Коллагеновые волокна придают соединительной ткани прочность и долговечность. Каждое коллагеновое волокно составляет несколько микрометров в диаметре и состоит из тысяч индивидуальных полипептидных цепей коллагена, плотно упакованных вместе. Следует отметить, что дисплазии соединительной ткани чаще всего возникают не столько из-за генетических дефектов в коллагене, сколько вследствие дефектов в десятках генов, влияющих на биосинтез, посттрансляционные модификации, секрецию, самосборку и ремоделирование коллагеновых волокон. Например, лизилоксидаза (ген LOX), а также лизилоксидазоподобные ферменты (гены LOXL1, LOXL2, LOXL3 и LOXL4) осуществляют поперечную сшивку полипептидных цепей коллагена, таким образом усиливая механическую прочность фибрилл. Дефицит активности лизилоксидазы обнаруживается у пациентов с синдромом Элерса-Данло [10].

Было показано, что магний способствует снижению уровня активности матриксных металлопротеиназ (ММП) (Ueshima K., 2003). Соответственно, дефицит магния приводит к увеличению суммарной активности ММП и более агрессивной деградации коллагеновых волокон, что также ухудшает механическую прочность соединительной ткани. Эксперименты подтверждают влияние магния на биологическую активность ММП. У мышей с искусственно вызванным дефицитом магния стенка аорты значительно тоньше, чем у контрольных животных. Эти изменения коррелируют с повышением общей активности металлопротеиназ MMP2 и MMP9 [11]. Вероятно, эффект магния в уменьшении активности MMP2 блокируется двумя тирозинкиназными ингибиторами - генистеином и гербимицином. Это позволяет предположить, что внеклеточный магний уменьшает секрецию ММП через внутриклеточный сигнальный каскад, который включает определенную тирозинкиназу [12]. Дополнение диеты фолиевой кислотой и солями магния уменьшает секрецию MMP2 и оказывает положительное влияние, в частности, на течение и прогноз ишемической болезни сердца (ИБС) [13].

Клетки (фибробласты, хондробласты, остеобласты) - активный компонент соединительной ткани. Именно клетки синтезируют элементы внеклеточного матрикса (протеогликаны, коллагеновые, эластиновые волокона, фибронектин и др.) и поддерживают структурную целостность соединительной ткани. Клетки также секретируют все ферменты, необходимые для формирования и ремоделирования соединительной ткани (металлопротеиназы и др.).

Следует отметить значимое влияние микроэлементов, в частности ионов магния, на процессы синтеза клетками соединительной ткани. В частности, ионы Mg2+ стабилизируют структуру транспортной РНК (тРНК), а дефицит магния приводит к увеличению числа дисфункциональных молекул тРНК, таким образом снижая и замедляя общую скорость белкового синтеза. В исследованиях было показано, что низкое содержание магния стимулирует преждевременную смерть эндотелиоцитов и фибробластов в культуре [14]. Другими возможными механизмами влияния магния являются повышение активности металлопротеиназ-эластаз (деградирующих эластичные волокна), трансглутаминазы (формирующей поперечные глутамин-лизиновые сшивки эластина), лизилоксидазы (поперечная сшивка цепей эластинов и/или коллагенов), гиалуронидаз (деградирующих гиалуронан). Эти механизмы суммированы на рис. 1.



Положительное влияние магния на структуру соединительной ткани подтверждается результатами недавно проведенного нами экспериментального исследования на моделях ран и ожогов [15]. Результаты экспериментального исследования эффектов органической соли магния (магния лактат дигидрат) на эпителиализацию ран и ожогов показали, что прием органического магния внутрь стимулирует более эффективное и быстрое заживление ран по сравнению со стандартной терапией солкосерилом. По результатам гистологических анализов тканей рубца в различных группах животных прием магния предотвращает избыточное разрастание коллагеновых фибрилл, способствует росту эластиновых волокон, росту числа фибробластов соединительной ткани и формированию полноценнного основного вещества, что в целом приводит к повышению гистологического качества рубца.
О терапии ДСТ у детей

Вклад наследственности в развитие мультифакториального заболевания, к которым относится и ДСТ, составляет не более 20%. На долю экологических воздействий и возможности клинической медицины в улучшении здоровья приходится около 30%, а основное значение (50%) при развитии заболевания имеет образ жизни пациента [1]. С клинической и прогностической точки зрения несиндромные дисплазии подразделяются на три отчетливо различимые группы, что требует дифференцированного подхода к реализации лечебно-профилактических технологий (рис. 2).




В абсолютном большинстве случаев основная задача наблюдения пациентов молодого возраста - сохранение здоровья и предупреждение прогрессирования диспластических процессов. Главными подходами к лечению пациентов с ДСТ являются рациональная диетотерапия, метаболическая терапия, физиотерапия, лечебный массаж, индивидуально подобранная лечебная физкультура и плавание. При отсутствии значительных функциональных нарушений детям с ДСТ показан общий режим с правильным чередованием труда и отдыха, целесо­образны утренняя гимнастика, чередование умственной и физической активности, прогулки на свежем воздухе, полноценный ночной сон, короткий отдых днем. Предпочтительны динамические нагрузки (плавание, ходьба, прогулочные лыжи, велосипед, бадминтон, гимнастика ушу) и нецелесообразны занятия балетом и танцами, групповые игровые виды спорта, связанные с большой вероятностью травм.

Важным направлением лечения пациентов с ДСТ является рациональная диетотерапия. Ее основной целью считается предоставление организму в достаточном количестве микронутриентов (витаминов, микроэлементов, витаминоподобных веществ и др.), необходимых для поддержания здорового метаболизма соединительной ткани. Диетотерапия дополняется медикаментозным лечением с использованием витамино-минеральных комплексов и моноформ витаминных (витамины D, С, и др.) и/или минеральных препаратов (моноформы магния, цинка, меди, марганца, бора и др.). Особенно следует отметить роль витаминов С, Е, В6 и D.

Среди микроэлементов магний, медь и марганец особенно важны для поддержания физиологического метаболизма соединительной ткани. Для структуры соединительной ткани крайне важна роль магния, который является одним из основных биоэлементов, обеспечивающих физиологический метаболизм соединительной ткани [3].

При коррекции глубокого магниевого дефицита трудно обойтись только диетой и часто требуется фармакотерапия. Исследования бионакопления при использовании различных препаратов магния дали основание утверждать, что биодоступность органических солей магния почти на порядок выше, чем неорганических [16]. При этом органические соли магния не только значительно лучше усваиваются, но и легче переносятся больными. Неорганические соли магния чаще дают диспептические осложнения, такие как диарея, рвота, рези в животе [17]. Лечение эффективнее, если вводят одновременно и магний, и магнезиофиксатор (витамины В6, В1, Глицин).

Среди препаратов, используемых для коррекции магниевого дефицита, препарат Магне В6имеет разрешение для применения в педиатрии. Форма Магне В6 в виде раствора для приема внутрь разрешена к приему у детей с первого года жизни (масса тела более 10 кг) в дозе 1-4 ампул в сутки. Таблетки Магне В6 и Магне В6 Форте разрешены детям старше 6 лет (масса тела более 20 кг) в дозе 4-6 таблеток в сутки.

Следует подчеркнуть, что диетотерапия у пациентов с ДСТ является составной частью комплексной программы лечения соответствующего «основного» проявления ДСТ у данного пациента [1, 7]. Например, в случае пролапса митрального клапана (ПМК) ортостатическую симптоматику (постуральная гипотензия и сердцебиение) можно уменьшить повышением потребления жидкости и соли, ношением компрессионного белья, в тяжелых случаях приемом минералокортикоидов [4]. Прием ацетилсалициловой кислоты (75-325 мг/сут) показан пациентам с ПМК с транзиторными ишемическими атаками при синусовом ритме и без тромбов в левом предсердии. Антибиотики для профилактики инфекционного эндокардита при всех манипуляциях, сопровождающихся бактериемией, назначают пациентам с ПМК, в особенности при наличии митральной регургитации, утолщении створок, удлинении хорд, дилятации левого желудочка или предсердия [4].

Имеются литературные данные об эффективности препаратов магния при первичном ПМК [3, 5]. Было показано, что через шесть месяцев регулярного приема препарата органического магния не только нормализовывалась частота сердечных сокращений и уровень артериального давления, снижалось число эпизодов нарушений ритма, но и достоверно уменьшался тремор и глубина пролабирования створок митрального клапана [18].
Заключение

Дисплазия соединительной ткани объединяет такие заболевания детей и подростков, как сколиоз, рахит, плоскостопие, нарушения фиксации органов (гастроптоз, нефроптоз, колоноптоз), пролапс митрального клапана, миопия и другие. Особого внимания заслуживает то, что ДСТ в детстве является патофизиологической основой формирования сердечно-сосудистых и цереброваскулярных заболеваний у взрослых. Таким образом, ДСТ в детстве предрасполагает к сокращению продолжительности жизни и ухудшению качества жизни во взрослом возрасте. Имеющиеся данные фундаментальной и клинической медицины позволяют предположить, что ДСТ является одной из клинических форм проявления первичного магниевого дефицита [1, 3]. Поэтому использование препаратов магния можно рассматривать как средство патогенетического лечения ДСТ. Чем раньше начата нутрициальная поддержка на фоне современного магний-дефицитного питания, тем лучше.

Литература
[Spoiler (click to open)]

  1. Нечаева Г. И., Викторова И. А., Громова О. А., Вершинина М. В., Яковлев В. М., Торшин И. Ю. с соавт. Дисплазии соединительной ткани у детей и подростков. Инновационные стационар-сберегающие технологии диагностики и лечения в педиатрии. М., 2010.
  2. Paunier L. Effect of magnesium on phosphorus and calcium metabolism // Monatsschr Kinderheilkd. 1992, Sep; 140 (9 Suppl 1): S17-20.
  3. Торшин И. Ю., Громова О. А. Молекулярные механизмы магния и дисплазии соединительной ткани // Росс. мед. журнал. 2008, с. 263-269.
  4. Торшин И. Ю., Громова О. А. Полиморфизмы и дисплазии соединительной ткани // Кардиология, 2008; 48 (10): 57-64.
  5. Громова О. А., Торшин И. Ю. Магний и пиридоксин: основы знаний. 2-е издание. М., Миклош, 2012, 300 с.
  6. Нечаева Г. И., Яковлев В. М., Конев В. П., Дубилей Г. С., Викторова И. А., Глотов А. В., Новак В. Г. Клиника, диагностика, прогноз и реабилитация пациентов с кардиогемодинамическими синдромами при дисплазии соединительной ткани // Международный журнал иммунореабилитации. 1997; 4: 129.
  7. Викторова И. А. Методология курации пациентов с дисплазией соединительной ткани семейным врачом в аспекте профилактики ранней и внезапной смерти: Дис. … докт. мед. наук. Омск, 2005. 432 с.
  8. Alberts B., Johnson A., Lewis J., Raff M., Roberts R., Walter P. Molecular Biology of the Cell, 4 th edition // Garland Science, 2002, ISBN 0815340729.
  9. Okajima T., Fukumoto S., Furukawa K., Urano T. Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene // J Biol Chem. 1999, Oct 8; 274 (41): 28841-28844.
  10. Di Ferrante N., Leachman R. D., Angelini P., Donnelly P. V., Francis G., Almazan A. Lysyl oxidase deficiency in Ehlers-Danlos syndrome type V // Connect Tissue Res. 1975; 3 (1): 49-53.
  11. Pages N., Gogly B., Godeau G., Igondjo-Tchen S., Maurois P., Durlach J., Bac P. Structural alterations of the vascular wall in magnesium-deficient mice. A possible role of gelatinases A (MMP-2) and B (MMP-9) // Magnes Res. 2003; 16 (1): 43-48.
  12. Yue H., Lee J. D., Shimizu H., Uzui H., Mitsuke Y., Ueda T. Effects of magnesium on the production of extracellular matrix metalloproteinases in cultured rat vascular smooth muscle cells // Atherosclerosis. 2003, Feb; 166 (2): 271-277.
  13. Guo H., Lee J. D., Uzui H., Yue H., Wang J., Toyoda K., Geshi T., Ueda T. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells // Circ J. 2006, Jan; 70 (1): 141-146.
  14. Killilea D. W., Maier J. A. M. A connection between magnesium deficiency and aging: new insights from cellular studies // Magnesium Research. 2008; 21 (2): 77-82.
  15. Жидоморов Н. Ю., Суракова Т. А., Гришина Т. Р. с соавт. Перспективы использования препарата Магнерот в эстетической медицине // Эстетическая медицина. 2011, т. 10, № 4, с. 3-13.
  16. Coudray C., Feillet-Coudray C., Rambeau M., Tressol J. C., Gueux E., Mazur A., Rayssiguier Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: a stable isotope study // J Trace Elem Med Biol. 2006; 20 (2): 73-81. Epub 2005, Dec 20.
  17. Grimes D. A., Nanda K. Magnesium sulfate tocolysis: time to quit // Obstet Gynecol. 2006 Oct; 108 (4): 986-989.
  18. Domnitskaia T. M., D’iachenko A. V., Kupriianova O. O., Domnitskii M. V. Clinical value of the use of organic magnesium in adolescents with syndrome of cardiac connective tissue dysplasia // Kardiologiia. 2005; 45 (3): 76-81.

RU.MGP.12.01.08

А. Г. Калачева*, **, кандидат медицинских наук
О. А. Громова*, **, доктор медицинских наук, профессор
Н. В. Керимкулова*, **,кандидат медицинских наук, доцент
А. Н. Галустян***, кандидат медицинских наук, доцент
Т. Р. Гришина*, **, доктор медицинских наук, профессор

* Российский сателлитный центр института микроэлементов ЮНЕСКО, Москва
** ГБОУ ВПО ИГМА Минздравсоцразвития России, Иваново
*** ГБОУ ВПО СЗГМУ им. И. И. Мечникова Минздравсоцразвития России, Санкт-Петербург

http://www.lvrach.ru/2012/03/15435378/

соединительная ткань и ее дисплазия, синдромы, витамины/минералы/аминокислоты, генетика

Previous post Next post
Up