Энергетикам на заметку

Mar 14, 2012 09:56

ЧАСТЬ 1






Мировой экономический кризис выявил противоречие между состоянием современной энергетики и потребностями общественного развития. Рост цен на углеводороды в 2001-2008 годах сопровождал экономический подъем и стал одним из факторов его удушения. Отстаиваемые властями и корпорациями альтернативные источники энергии не удешевляют ее и не угрожают сложившемуся положению. Между тем, снижение стоимости генерации является одним из принципиальных условий преодоления глобального кризиса. Выполнимо ли оно? Существуют ли технологии и направления научного поиска способные произвести революцию в энергетике? Какое энергетическое и технологическое будущее ожидает мир? Что мешает назревшему перевороту и каковы будут его результаты?

Направления старой альтернативы

США и Европейский Союз расходуют значительные средства на развитие альтернативной энергетики. Власти стран Запада косвенно признают наличие энергетического кризиса в мире, но не рассматривают его как часть глобального экономического кризиса. Создается впечатление, что правительства и корпорации ищут замену старым источникам энергии, рассчитывая через длительное время потеснить их за счет аналоговых и альтернативных источников. Ни о каком вытеснении старой энергетики как дорогой и малопроизводительной за счет революционных решений речь не идет. С помощью анализа можно показать реальное значение и ближайшие перспективы популярных и субсидируемых направлений.

Биотопливо

Медленное распространение биотоплива в США и ЕС в начале XXI века породило надежду на возможное вытеснение им автомобильного топлива, производимого из нефти. Некоторые аналитики даже расценивали рост его производства как революционный шаг в деле разрыва с «эпохой бензина». Особенно много надежд оказалось связано с биотопливом в период необычайно интенсивного предкризисного роста мировых цен на нефть в 2007-2008 годах. Дорожающая нефть казалась гарантом перспективности развития биологического топлива-замены для двигателей внутреннего сгорания. Правительства стран Западной Европы и Соединенных Штатов субсидировали это направление. Согласно оценке Worldwatch Institute в 2007 году на планете было произведено 54 млрд литров различного биотоплива. Этот показатель соответствует 1,5% мирового потребления жидкого топлива.

Производство топлива из биологического сырья основано на переработке стеблей сахарного тростника, семян кукурузы, рапса либо сои. Однако, даже без учета свойств биотоплива, его инновационность в 2000-е годы была значительно преувеличена. Еще в период кризисных потрясений 1970-х годов Бразилия стала широко использовать в качестве автомобильного топлива продукты перегона продовольственных культур. Не случайно в 2007 году, когда производства основного биотоплива - этанола в мире составило 46 млрд литров, эта страна вместе с Соединенными Штатами выпускала 95% от мирового объема производства этанола. Если сторонники биотоплива настаивали на его чистоте (малом загрязнении окружающей среды при сгорании), то противники биотоплива указывали на иные факты. Экологические организации констатируют вырубку девственных лесов для плантаций топливной кукурузы или сахарного тростника. Выращивание культур, необходимых для производства биотоплива, интенсивно разрушает почвы, являясь при этом еще и дорогим. Не случайно лишь периоды дорогой нефти - 1973-1986, 2005-2008, 2010-2011 годы порождали наибольший интерес к биотопливу как заменителю бензина.

По расчетам Стэндфордского университета, использование выключенных из сельскохозяйственного оборота 385-472 миллиона гектаров земли позволило бы увеличить долю биотоплива до 8% в мировом энергетическом балансе. Доля биотоплива на транспорте при этом может дойти до 10-25%. Однако для реализации подобных планов требуется два принципиальных условия: высокие цены на нефть и возможность широко применять в производстве топливных сельскохозяйственных культур ручной труд. Избыток в мире неквалифицированных рабочих и прогнозы бесконечного удорожания нефти, как кажется, дают основания надеяться на воплощение замыслов сторонников биотоплива. Но разразившийся в 2008 году глобальный экономический кризис не случайно оказался необычайно продолжительным: мировой экономике нужна дешевая энергия, а обеспечить ее не в состоянии ни углеводороды, ни их заменители. Как и в годы кризиса 1899-1904 годов вопрос стоит о революции в энергетике, а не о поиске замены природного топлива. Важно и то, что изобретатели двигателей внутреннего сгорания знали о горючих свойствах спиртов. Однако выбор нефти в качестве источника получения топлива был определен тем, что ее можно было легко найти в готовом виде.

Биотопливо представляет собой тупиковую ветвь технической эволюции. Оно приемлемо автомобильным корпорациям и не беспокоит всерьез сырьевые монополии. Проблема в том, что оно бессильно обеспечить повышенную эффективность. Производители биотоплива не могут обходиться без государственных субсидий. Картина будущего с широким применением биотоплива - это не более чем консервативная иллюзия. Кроме того, необходимо иметь в виду, что производство биотоплива сокращает объем производства продовольствия и истощает почвы.

Ветроэнергетика

Наряду с биотопливом чрезмерные надежды возлагают на ветроэнергетику. Она представляет отрасль электроэнергетики, специализирующуюся на преобразовании кинетической энергии воздушных масс в атмосфере в электроэнергию. Для решения этой задачи используются специальные агрегаты - ветрогенераторы. Развитие данного направления в электроэнергетике привело к тому, что в 2009 году установленная мощность всех ветрогенераторов составила 159,2 гигаватт. За тот же год доля электроэнергии, получаемой при помощи ветряных генераторов, дошла до 2% от всей произведенной в мире электрической энергии. С помощью ветрогенераторов было, таким образом, получено 340 тераватт-часов электроэнергии.

Ветрогенераторы часто эстетически воспринимаются как символ энергетики будущего. Ветроэнергетике отводится важное место в прожектах «зеленой экономики». С точки зрения теории ограниченности ресурсов развития, человечество больше не может обходиться добываемыми невосполнимыми энергоресурсами. Плюсы ветроэнергетики состоят в опоре на естественные источники кинетической энергии. Но ветер далеко не везде на планете может обладать необходимой силой, чтобы обеспечить решение энергетической проблемы даже на локальном уровне. Удобство ветрогенераторов для снабжения током отдаленных ферм или прибрежных зон еще не делает эту технологию удобной для индустрии и мегаполисов. Даже рост цен на электроэнергию в 2000-е годы не сделал ветровые генераторы сравнительно экономичными. Производимый ими шум и вибрация является дополнительными помехами. Другая проблема - возможное обледенение лопастей установки.

Ветроэнергетика скорее является средством частного решения энергетической проблемы, чем общим принципиальным ответом на энергетический вызов времени. Не случайно до 1970-х годов ветроэнергетика казалась не более, чем забавой и мало кто был способен сконструировать картину будущего на ее основе. Рост мировых цен на нефть привел к ее рождению как «серьезной альтернативы», но ценовой спад на рынках вновь изменил ситуацию, пока в 2001-2011 годах явно не обозначился кризис старой энергетической системы капитализма. Вторая волна популярности ветроэнергетики оказалась мощнее первой. Однако нельзя сказать, что создатели первых гидроэлектростанций в конце XIX века не могли обратиться к ветру как источнику энергии. Не произошло этого не случайно: распространение гидроэлектростанций отвечало запросам индустриального развития. Использование же ветра, как источника энергии, в наши дни скорее говорит о безысходности, чем о наличии прогрессивного направления энергетики.

Потенциал ветроэнергетики велик. Мощность высотных ветровых потоков на уровне 7-14 км от поверхности Земли приблизительно в 10-15 раз выше потоков приземных. Вертикальная удаленность ветрогенераторов от населенных пунктов могла бы снять проблему нерегулярности ветров, шума и вибрации. Но вопрос состоит в том, как поднять, смонтировать и эксплуатировать установки на такой высоте? Как передавать электроэнергию от электростанций на уровне 10 км и более на поверхность планеты? Не ясно и то, сколько энергии потребуется для удержания в воздухе ветроустановок. Все это ставит вопрос о том, что сперва человечество должно совершить новый переворот в энергетике, а затем уже оно получит возможность всерьез использовать энергию ветра.

Геотермальная энергетика

Геотермальная энергетика дает образец «неиссякаемой энергетики», что является чрезвычайно важным в условиях удорожания основных для XX века источников энергии. Основано данное направление энергетики на производстве тепловой и электрической энергии за счет содержащейся в недрах земли тепловой энергии. Получение ее обеспечивают специальные геотермальные станции. Геотермальные источники находят хозяйственное применение в Новой Зеландии, Исландии, Италии, Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении и США.

В получении электроэнергии с помощью геотермальных источников мировым лидером остается Исландия. До трети электричества этой стране обеспечивает геотермальная энергетика. Однако среди государств, применяющих технологии геотермальной энергетики по установленной мощности, лидируют Соединенные Штаты. В 2010 году она превысила 3000 МВт. Примечательно, что наиболее активный рост геотермальной энергетики пришелся на 2001-2008 годы, время удорожания углеводородов. Установленная мощность геотермальных электростанций, по оценке, высказанной на сайте RenewableEnergyWorld.com, на начало 1990-х годов в мире равнялась 5 000 МВт. К началу 2000-х годов она возрастала всего на 1 000 МВт, зато на конец 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10 500 МВт. Рост почти двукратный, что особенно важно, если учесть семикратный рост цен на нефть за этот период.

В 2009-2011 годах геотермальная энергетика продолжала наращивать свой удельный вес. В условиях дорогого углеводородного топлива геотермальные источники стали приобретать большее значение: не столько правительственная поддержка данного направления, сколько дешевизна получения тепловой и электрической энергии сделали это направление перспективным. Его основная проблема - не всеобщий характер применения, связанный с ограниченной доступностью геотермальных энергетических источников. Их эксплуатация не может заменить углеводородное топливо, сохраняющее значение основного источника энергии в мире. Геотермальная энергетика остается перспективным направлением, но не может стать новым локомотивом в энергетике. Успешное ее развитие возможно лишь в сопряжении  с другими тенденциями.

Гелиоэнергетика

Гелиоэнергетике отводят в прогнозах производство к 2060 году 20-25% всего необходимого человечеству электричества. Однако на начало 2010 года сгенерированная на основе солнечного излучения энергия составляла всего 0,1% от мирового объема. Гелиоэнергетика развивается сравнительно быстро, но ее значение невелико. Даже в такой солнечной стране как Испания, где есть все климатические предпосылки для гелиоэнергетики, в 2010 году благодаря фотоэлементной солнечной энергетике было получено 2,7% электроэнергии. Гораздо большее значение имеет в странах Южной Европы применение солнечных батарей для согрева воды в домах. Ограниченность бытового применения гелиоэнергетики говорит о скромных ее возможностях.

Существуют планы промышленного развития генерации электроэнергии с помощью солнечных электростанций. Один из наиболее известных проектов, план строительства огромной электростанции в пустыне Сахара (территория Туниса). Предполагается, что размещение в этом регионе огромных солнечных батарей позволит получать значительное количество энергии. Проблемы проекта состоят в сложности поставки электроэнергии в Европу, неоправданно больших затратах на сооружение и обслуживание агрегатов, песчаные ветры и иные «фокусы климата».  Компания Nur Energie до 2016 года должна построить электростанцию TurNur с заявленной мощностью в 2 гигаватта, что вдвое больше мощности средней атомной электростанции. Стоимость проекта оценена в 400 млрд евро. Станцию составят 825 тысяч солнечных батарей. Проект оценивается как фантастически дорогой. Он может окупиться лишь при условии, что электроэнергия резко не подешевеет в результате применения новых способов генерации.

Практически возможным и более удобным остается ограниченное применение гелиоэнергетики, а также ее индивидуально-бытовое использование. Развиваясь как альтернативное направление к использованию углеводородного топлива для получения электричества, солнечная генерация не может ее заменить. Теоретически, размещение установок на орбите планеты могло бы дать огромный эффект. Но «сахарские» трудности в этом случае умножаются.

Экологи констатируют вредоносность производства солнечных батарей. Сооружение гелиоэнергетических станций является также дорогостоящим. Окупаемость их напрямую связана с повышенной конъюнктурой на мировом рынке электроэнергии, нефти и газа. Развитие гелиоэнергетики обеспечено удорожанием производства энергии с помощью традиционных - ранее более экономичных - источников. Возможности расширенного применения устройств солнечной энергетики напрямую зависят от того, удастся ли человечеству найти новые решения в энергетике. При радикальном снижении себестоимости электроэнергии (получаемой в больших объемах новыми способами), поле гелиоэнергетики не сможет расти быстро. Напротив отсутствие подобных прорывов обеспечит для нее более благоприятные условия. Но даже адепты данного направления не видят революционного будущего гелиоэнергетики.

Прогнозируемый аналитиками медленный рост гелиоэнергетики не решает экономических проблем современного капитализма, следствием и концентрированным выражением которых стал острый энергетический кризис.  Преодоление его вряд ли окажется связанным с гелиоэнергетикой, что не отменяет ее возможного реванша в более далекой перспективе.

Управляемый термоядерный синтез (УТС)

Как показывает опыт расположенной к югу от Лос-Анджелеса солнечной электростанции, получение с помощью гелиоэнергетики электроэнергии обходится на 30-35% дешевле энергии атомных электростанций. При таком соотношении развитие ядерной энергетики и даже направления управляемого термоядерного синтеза может показаться неоправданным. Проблема УТС, однако, состоит в том, что он остается областью разработок, а не дает производственной технологии. Считается, что не менее 40 лет отделяют человечество от первого промышленного применения УТС. Возможно, мир раньше получит доступ к Солнцу как природному термоядерному источнику энергии, чем создаст свой.

Идея создания термоядерного реактора возникла в 1950-е годы. Оптимистам казалось, что до его появления остается всего несколько лет. В основе УТС лежит процесс слияния легких атомных ядер, происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Технические проблемы, возникшие в ходе разработок, превратили несколько лет в несколько десятилетий.

«Заставить» экспериментальный реактор произвести хоть сколько-нибудь термоядерной энергии оказалось не просто. Уже в 1970-е годы исследователям стало понятно, что больший успех возможен лишь в долгосрочной перспективе. Ожидаемое экономическое использование термоядерных реакторов для выработки электроэнергии будет обеспечено безграничным запасом общедоступного топлива (водорода). Добыча его легко может быть обеспечена из морской воды. Отсутствие продуктов сгорания и невозможность неуправляемой реакции синтеза - другие положительные стороны УТС. Однако скорого хозяйственного эффекта, а тем более общественного преобразования на основе термоядерного синтеза ожидать не приходится.

Водородная энергетика

Использование водорода в качестве средства аккумулирования, транспортировки и потребления энергии лежит в основе водородной энергетики. Развитие данной отрасли позволяет применять водород в производстве и для нужд транспортной инфраструктуры. Водород очень распространен на поверхности Земли. Теплота его сгорания чрезвычайно высока. В кислороде продуктом сгорания становится вода. Проблему представляет лишь необходимость получать водородное топливо из воды. По расчетам Департамента Энергетики США (DoE) стоимость водорода и бензина сравняются к 2015 году. Расчеты эти основаны на ценовой динамике последнего десятилетия и предполагают дальнейшее удорожание нефти.

Водородная энергетика вселяет много надежд. В Южной Корее принят план наращивания ее значения в экономике, даже строительства «водородной экономики». К 2050 году предполагается производить на водородных топливных элементах 22% всей энергии, потребляемого частным сектором электричества - 23%. Не менее внушительны планы Соединенных Штатов. Построить «водородную энергетику» страна рассчитывает до 2025 года. Планы Исландии определяют дату широкого перехода экономики на водород к 2050 году. Однако основное применение водорода связано с производством аммиака и бензина. Ежегодно США получают порядка 11 млн тонн водорода. Это количество считается достаточным для годового потребления 35-40 млн автомобилей. В ЕС и США функционируют специальные водородные трубопроводы; в Европе их протяженность составляет 1500 км, в США - 750 км. Для передачи водорода на расстоянии после незначительной доработки могут использоваться и трубопроводы, по которым передается природный газ. Проблемой является лишь экономическая целесообразность.

Большие планы «водородной экономики» не предполагают скорой реализации. Амбициозные планы правительств не включают также вытеснение старой энергетики, что связано с традиционным основанием водородной энергетики. Ее развитие мыслится лишь в симбиозе со старыми направлениями, а темпы его зависят от динамики на мировом рынке нефти. Падение цен на «черное золото» в силу углубления экономического кризиса способно оказаться мощным тормозом роста всей нетрадиционной энергетики и водородной энергетики в частности. Пока получение водородного топлива зависит от старой энергетики, даже в автотранспорте его перспективы выглядят сомнительно. В авиации и железнодорожном транспорте, как и в автомобильном транспорте, водород не совершает переворота в эффективности и принципах двигателей. Как и биотопливо он выступает в консервативной роли аналога нефтяного топлива.

инновации, новые технологии, перспективы, новая энергия, альтернативные источники, энергетика

Previous post Next post
Up