Полетами в космос сейчас никого не удивишь. Но по принципу работы даже самый современный ракетный двигатель мало чем отличается от того, что был наспех изображен перед казнью Кибальчичем в стенах Петропавловской крепости. Его главная деталь - так называмое сопло Лаваля, в котором раскаленные газы, расширяясь, охлаждаются, и их тепловая энергия преобразуется в кинетическую энергию реактивной струи. А каким образом получается газ, нагретый до высокой температуры, - не имеет значения. Это могут быть продукты горения порохового заряда или химической реакции топлива с окислителем; инертное газообразное рабочее тело можно нагревать электрической дугой, солнечным светом или теплом, выделяемым в результате ядерной реакции, - все равно без сопла Лаваля не обойтись,только с его помощью, казалось бы, и создашь реактивную тягу.
РАКЕТА БЕЗ СОПЛА
Однако около десяти лет назад два сотрудника Научно-исследовательского интитута ядерной физики Московского государственного университета - доктор физико-математических наук М.Е.Герценштейн и кандидат физико-математических наук В.В.Клавдиев - предложили сделать ракетный двигатель вообще без всякого сопла (и даже без камеры сгорания!), используя для этого известные законы физики.
Чтобы ракета могла унести как можно дальше как можно больше полезного груза, минимальное количество рабочего тела (то есть газов, истекающих из сопла) должно создавать максимальную тягу, которая напрямую зависит от скорости реактивной струи. А последняя тем больше, чем выше температура в камере сгорания.
Скорость реактивной струи, создаваемой соплом Лаваля в результате химической реакции, не может превышать 5 км/с; причем в камере сгорания развивается температура, которую едва вы-держивают даже самые жаростойкие материалы. Чтобы довести скорость истечения газов до 10 км/с, температура рабочего тела должна иметь порядок 5000"С, что превышает температуру плавления любых известных материалов. А до 100 км/с - вообще около полумиллиона градусов! Фантастически высокая температура - тут уж не помогут никакие ухищрения конструкторов, хотя только при этом условии дальние космические грузоперевозки и могут стать реальными. Тупик?
Как известно, в тупиковых ситуациях необходимо принципиально новое решение проблемы: в данном случае следовало придумать способ создания реактивной струи без сопла Лаваля и камеры сгорания, стенки которых ограничивают рабочую температуру. Идею такого двителя подсказала обыкновенная свеча, прекрасно всем знакомая.
Это можно сделать, например, таким образом. Изготовим рабочее тело - какой-либо твердый, но легко испаряющийся материал, - как и свечу, в форме стержня. Зажжем высокотемпературный СВЧ-разряд, и с помощью электромагнита локализуем зону нагрева на торце этой «свечи», который раскалится, и образующиеся пары превратятся в плазму, создающую реактивную струю (рис.3). В результате скорость истечения плазменной струи может быть сколь угодно большой, ибо здесь нет стенок, которым грозило бы разрушение под действием высокой температуры.
Согласно расчетам, по эффективности такой двигатель не уступит ионному, уже используемому для ориентации космических кораблей, но, в отличие от него, он способен развивать существенно более сильную тягу и служить для разгона ракет как при орбитальных полетах, так и полетах к другим планетам Солнечной системы. Эксперименты, выполненные в Московском научно-исследовательском радиотехническом институте, показали, что в подобном устройстве энергия СВЧ-генератора превращается в тепловую энергию разряда с КПД до 80%, а в Институте прикладной математики с помощью машинного моделирования было установлено, что потери энергии реактивной струи, создаваемой без сопла, весьма незначительны.