«Чудесная жизнь клеток. Как мы живем и почему мы умираем» Льюис Уолперт

Nov 22, 2015 14:35



Когда клетки ведут себя ненормально

У рака огромное множество - более четырех сотен - разновидностей, от лейкемии до рака груди. Раковые клетки отличаются от нормальных целым рядом признаков. Определяющих среди них два: во-первых, раковые клетки продолжают делиться вопреки запрограммированным ограничениям; во-вторых, они вторгаются в чужие ткани и уничтожают их.

Имея бесконечный потенциал роста и деления, раковые клетки очень мало зависят от внешних факторов. В случае повреждения они способны избежать апоптоза, которым почти всегда заканчивается жизнь поврежденных клеток - других, но не раковых! При этом раковые клетки постоянно посылают химические сигналы, которые заставляют кровеносные сосуды расти в направлении развивающейся опухоли и тем самым снабжать ее кислородом и питательными веществами. И даже то, что раковые клетки растут относительно медленно и в целом делятся реже, чем нормальные клетки, не очень-то утешает - они генетически нестабильны, и эта нестабильность иногда приводит к их скачкообразному росту и прогрессирующей злокачественности.

Размножение клеток при раке выходит из-под контроля из-за сбоя, который может возникнуть в одной-единственной клетке. Этот сбой практически всегда вызывается ошибкой в ДНК. Это со всей очевидностью проявляется при лейкемии - раковом заболевании белых кровяных телец, вызванном хромосомной транслокацией, при которой части из 9-й и 22-й хромосом меняются местами.

Все раковые клетки имеют подобную хромосомную патологию.

Есть предположение, что рак - это цена, которую мы платим за обладание клетками, постоянно ремонтирующими и обновляющими органы нашего тела. Ведь большинство видов рака возникают в тканях, содержащих в себе делящиеся клетки, - на коже, в легких и кишечнике. Нервные клетки не делятся, поэтому опухоли мозга возникают вокруг них - среди клеток, которые их обслуживают, и среди нервных стволовых клеток.

Причина практически всех раковых заболеваний, как уже было сказано, в изменениях, которые претерпевает ДНК. Сами же эти изменения могут произойти или под влиянием внешнего воздействия канцерогенных факторов, например радиации или химических веществ, или в результате неправильной репликации ДНК. Время, которое проходит от начала воздействия канцерогенных факторов до появления видимой опухоли, может занять десять или даже двадцать лет, как это бывает в случаях с курением.

Полвека тому назад было высказано мнение, что рак вызывают вирусы, занося в клетки новый генетический материал, меняющий поведение клеток. Ныне установлено, что несколько видов рака действительно вызываются вирусами - например, рак шейки матки у женщин. Вирус СПИДа также способен спровоцировать рак, поскольку он разрушает иммунную систему до такой степени, что другой вирус - вирус герпеса - получает возможность беспрепятственно заражать ткани.

Почти все виды рака развиваются из одной-единственной клетки-мутанта, хотя к тому моменту, когда в организме человека обнаруживают рак, эта единственная клетка уже успевает дать потомство, исчисляемое миллиардами злокачественных клеток. Здесь мы сталкиваемся с загадкой: считается, что каждый ген, находящийся в любой из неисчислимого числа делящихся клеток, за время нашей жизни подвергается неоднократным мутациям. Почему же в таком случае раком не болеют все поголовно? Ответ на этот вопрос заключается в том, что для возникновения рака необходима мутация десяти и более определенных генов. Такие мутации обычно случаются только за многолетний период, чем и объясняется то, что риск заболевания раком увеличивается с возрастом.

В результате интенсивных исследований выяснилось, что с раковыми опухолями связано около 350 генов. Эти гены находятся во всех хромосомах, кроме хромосомы Y.

Удивительно, но большинство генов, вызывающих рак, уже давно известны - это гены, которые участвуют в развитии эмбриона и в силу этого вовлечены в организацию взаимодействия между клетками. В числе таких генов и те, чьи белки служат в качестве сигнальных. Неоднократно упомянутый нами ген «Акустический еж» также связан с развитием рака. Многие «раковые» гены до мутации контролируют деление клеток и прекрасно справляются со своей задачей. Но стоит сбиться программе, и они позволяют клеткам размножаться и в тех случаях, когда это идет во вред организму.

Поначалу воздействие мутаций приводит к тому, что убыстряется частота деления клеток и клетки игнорируют обычные запреты. Например, в здоровых тканях кожи стволовые клетки делятся, порождая одну новую стволовую клетку и одну клетку, которая в дальнейшем уже не делится. При заболевании раком деление продолжается таким образом, словно клетки «забыли» обо всех ограничениях.

Общим признаком раковых клеток является то, что они утрачивают способность нормально дифференцироваться. Это особенно верно для раковых клеток в тканях, где происходит постоянное замещение клеток, - например, в коже. Неспособность к нормальному дифференцированию клеток также наблюдается при лейкемии. Пораженные раком клетки становятся злокачественными уже на ранней стадии развития, еще будучи незрелыми.

Существуют данные, что источник образования многих опухолей - это стволовые клетки. Достаточно уверенно можно утверждать, что стволовые клетки играют негативную роль при развитии рака груди. Если здоровой мыши перелить кровь мыши, заболевшей лейкемией, то большинство клеток этой крови не принесут ей никакого вреда. Опасность будет исходить лишь от стволовых клеток, хотя число их относительно невелико.

«Раковый» потенциал стволовых клеток не должен вызывать удивления - ведь это единственные клетки нашего тела с практически неограниченными способностями к делению. Нахождение их в составе раковой опухоли представляет большую проблему при лечении рака, ибо они могут выжить при воздействии на опухоль радиацией или химиотерапией.

Какими инструментами наделила эволюция клетки для защиты от рака? В организме существует ген р53, который называют «хранителем генома». Активизация гена р53 происходит в тот момент, когда в организме происходит сбой и какая-то клетка начинает угрожать перерождением в раковую. Вступая в дело, ген р53 приостанавливает обычный цикл жизнедеятельности такой клетки и вынуждает ее совершить самоубийство. Тут важно, чтобы р53 не активизировался, когда дела в организме находятся в полном порядке. Для этого существует множество белков-регуляторов, которые контролируют процесс активизации генов и обеспечивают необходимые предохранительные меры. В том случае, однако, если мутирует сам ген р53, то опасность развития в клетке рака резко возрастает.

Надо учитывать и еще одно обстоятельство: когда на опухоль оказывают воздействие радиацией или противораковыми препаратами, то это может повредить не только раковые, но и нормальные клетки. При этом ген р53 устремится к нормальным клеткам с тем же энтузиазмом, что и к раковым, и, не дав им восстановиться, добьется в конечном счете их гибели. Поэтому ученые пытаются найти способ в этих случаях как-то отключать ген р53. С другой стороны, крайне полезным было бы научиться активизировать ген р53, чтобы он избирательно боролся именно с раковыми клетками. Последние исследования на мышах показали, что усиление активности гена р53 в опухолях может приостановить рост опухоли и даже заставить ее рассосаться.

Есть предположение, что неконтролируемое деление раковых клеток связано с наличием повторяющихся участков ДНК на концах их хромосом - уже упоминавшихся теломер. В большинстве клеток теломеры укорачиваются при каждом последующем делении клетки, поскольку отсутствует энзим теломераза, способный вновь удлинять их; когда теломеры окончательно исчезают, клетка лишается возможности делиться. Это объясняет то, почему клетки, помещенные в искусственную питательную среду, имеют ограниченные возможности для деления - ведь они не способны восстанавливать прежнюю длину теломерных участков. Раковые же клетки выделяют теломеразу, благодаря чему после каждого деления длина теломерного участка полностью восстанавливается. Вполне возможно, что некоторые виды рака порождены клетками, которые лишились своих теломер, но затем вновь обрели возможность вырабатывать теломеразу, что позволило теломерным участкам отрасти вновь, а значит - вернуло этим клеткам способность делиться.

Вторжение раковых клеток из первоначальной раковой опухоли в другие органы и ткани известно под названием метастазов; это одно из наиболее опасных для человека проявлений активности раковых клеток. Когда они проникают в чужие ткани, находящиеся на некотором расстоянии от места первоначальной раковой опухоли, то первым делом начинают конкуренцию с находящимися там здоровыми клетками за доступ к кислороду и питательным веществам. Как правило, победа оказывается за пришельцами, которые выделяют энзимы, разрушающие ткани вокруг себя, - в результате здоровые клетки повреждаются и погибают. Даже маленькие раковые опухоли способны производить миллион новых клеток в день, и это при нацеленности на дальнейшее распространение. Благодаря этому они достигают кровеносных сосудов, откуда получают вещества, необходимые для роста. Кроме того, раковые клетки выделяют вещества, которые заставляют кровеносные сосуды тянуться к ним.

Чтобы обрести способность к перемещению за пределы первоначальной опухоли, раковые клетки должны освободиться от плотной связки с соседними клетками. Для этого требуется разрушить те молекулы, которые сцепляют их воедино. К тому же раковые клетки, выросшие в слое ткани, не способны перемещаться и мигрировать по организму; для того чтобы передвигаться, им необходимо изменить свои свойства.

Когда нормальная клетка перемещается и встречает на своем пути другую клетку, она перестает вытягиваться в передней части и приостанавливается. Это называется контактной задержкой движения. У раковых клеток нет подобных сдерживающих факторов, и поэтому они перемещаются по организму и добираются до его самых удаленных уголков - особенно быстро это происходит с кровью, если им удается проникнуть в кровеносный сосуд. При этом, когда раковая клетка в своем движении достигает узкого кровеносного капилляра, она вынуждена пробиваться сквозь его стенку. Иногда это ей не удается. Но в путешествиях по телу участвует слишком много злокачественных клеток, и многим из них удается преодолеть все барьеры на своем пути.

Наиболее часто встречается рак груди, легких и кишечника. Нередки раковые опухоли на коже - каждый год в мире регистрируется несколько миллионов подобных случаев. Особой формой рака кожи является меланома, которая развивается из имеющихся на коже пигментных клеток. Эти пигментные клетки зарождаются в области формирующегося нервного гребешка еще на самых ранних стадиях развития эмбриона и затем мигрируют в область кожного покрова, где играют ключевую роль в предохранении нашей кожи от воздействия солнечной радиации и, следовательно, защищают человека от рака кожи. Однако - и в этом состоит горькая ирония - из этих же клеток, в случае их мутаций, может развиться рак. Мутации приводят к разрушению их связей с соседними клетками. И как только пигментные клетки обнаруживают, что плотное кольцо вокруг них исчезло, они начинают безудержно размножаться. Изредка все ограничивается появлением обширных пятен на коже, но куда чаще образуется раковая опухоль, которая распространяется по поверхности кожи и может прорасти внутрь тела.

Есть данные, что такая реакция организма, как воспаление, благоприятствует раку. Ответственность за это несет наша врожденная иммунная система - в то время как более совершенная адаптивная иммунная система отчаянно бьется с раковыми клетками, отправляя на борьбу с ними антитела. Дело в том, что врожденная иммунная система в некоторых случаях воспринимает раковую опухоль как орган, который нуждается в поддержке; отдельными клетками раковая опухоль расценивается даже как рана, которая никак не залечивается. В результате в процесс вовлекаются макрофаги, которые патрулируют тело в поисках незваных пришельцев и теоретически способны убивать раковые клетки. Но в данном случае обманутые раковыми клетками макрофаги начинают вырабатывать химические вещества, способствующие росту опухоли. Более того, вещества, вырабатываемые клетками, поддерживающими воспалительные процессы, побуждают раковые клетки мигрировать в другие части тела и способствуют возникновению метастазов.

Функционирование человеческого организма может быть нарушено из-за сбоев в доставке крови по кровеносным сосудам. Ведь именно кровь доставляет в клетки питательные вещества и кислород, в которых они постоянно нуждаются. Даже кратковременное приостановление снабжения может иметь для клеток печальные последствия.

Уменьшение уровня кровоснабжения вызывает анемию, приводит к чувству усталости. Люди с ярко выраженной степенью анемии испытывают трудности с дыханием. Слабое кровоснабжение - вследствие нехватки кислорода - ведет к уменьшению выработки АТФ митохондриями. Если это происходит в сердечной мышце, то клетки не могут из-за этого правильно сокращаться, и это влияет на работу сердца. Тяжелая анемия увеличивает нагрузку на сердце, следствием чего становится сильное сердцебиение, а в отдельных, сложных случаях даже может произойти остановка сердца.

Нехватка АТФ также ведет к тому, что система вывода натрия из клетки через ее оболочку работает на пониженном уровне. При этом ионы натрия и молекулы воды продолжают поступать в клетку, и это заставляет ее разбухать, что вызывает дезорганизацию других функций клетки, и прежде всего синтез белков. Правда, эти изменения обратимы - при условии, что в клетку вскоре вновь начнет поступать кислород, а митохондриям и клеточной оболочке за время «голодания» не был нанесен слишком большой ущерб.

К резкому снижению уровня снабжения клеток кислородом ведут нарушения в работе красных кровяных телец, и особенно негативные изменения в молекулах гемоглобина. Уже упоминалось такое заболевание, как серповидная анемия, при которой красные кровяные тельца теряют гибкость и с трудом проходят сквозь мелкие капилляры. Причина этих изменений кроется в мутации гена, ответственного за синтез гемоглобина, что ведет к изменению строения и структуры одной аминокислоты в составе гемоглобиновой молекулы. Из-за этого вся молекула приобретает совсем иную структуру, которая деформирует красные кровяные тельца.

Проблемы в системе циркуляции крови могут привести к серьезному ущербу - от сердечных приступов до инсультов. Впрочем, в организме действуют специальные механизмы, направленные на восстановление поврежденных сосудов.

Свертывание крови - один таких механизмов. Свертывание крови в поврежденном сосуде происходит благодаря тромбоцитам, которые скапливаются в поврежденной области. Они выделяют химические вещества, которые вместе с ними самими образуют своего рода «пробку», закрывающую поврежденное место и тем самым останавливающую кровотечение. Тромбоциты - это небольшие фрагменты клеток дискообразной формы, вырабатываемые в костном мозге. Их единственная функция - предотвращать потерю крови. Оказавшись на месте повреждения, они меняют форму и превращаются из дисков в сферы, которые выбрасывают длинные тонкие нити.

Но те же самые спасительные тромбоциты в иной ситуации становятся причиной инсультов - если повреждается важный кровеносный сосуд, идущий в мозг. Сгусток, созданный ими на месте повреждения, превращается в тромб, вслед за чем следует повреждение нервных клеток. Тот же эффект вызывает тромб, образовавшийся в артерии и принесенный в мозг кровотоком. Впрочем, чаще всего тромбы образуются в венах, особенно в ножных венах тех людей, которые в течение долгого времени находятся в неподвижном состоянии.

Тромбы опасны еще и тем, что могут срываться с места и двигаться в потоке крови, достигая и блокируя новые участки системы кровообращения. Так, тромб, образовавшийся в вене, способен попасть в правое предсердие или в легкие. Тромб достаточно крупного размера, атаковавший крупную легочную артерию, может привести к резкому падению кровяного давления - и к немедленной смерти. Меньшие по размерам тромбы просто повредят легкие.

Внутренняя оболочка наших сосудов постепенно зарастает фиброзно-жировыми бляшками, что сужает их стенки и повышает вероятность развития атеросклероза. Такие бляшки в основном появляются в артериях. Считается, что они являются хронической воспалительной реакцией на повреждения внутренних стенок сосуда, но точно причина атеросклероза до сих пор не установлена.

Напряженно работающая сердечная мышца очень сильно зависит от хорошего кровоснабжения - ей необходимо постоянно получать кислород и питательные вещества. Сужение же кровеносных сосудов, идущих к сердцу, приводит к перебоям в ее работе и, как следствие, к смерти человека.

Остеопороз, заболевание костей, также может быть вызван уменьшением кровоснабжения, что приводит к активизации клеток остеокластов. В обычной ситуации функция остеокластов заключается в том, чтобы модифицировать кость по мере развития эмбриона и последующего роста человека. Но если ухудшается снабжение кости кислородом, остеокласты приступают к замене «плохо работающих» костных клеток, что делает кость более хрупкой и подверженной переломам.

Мутации генов являются основной причиной многих заболеваний, от дистрофии мышц до депрессии, поскольку приводят к изменениям или недопоставкам необходимых белков либо к присутствию белков в тех клетках, где они не нужны. К сожалению, в большинстве случаев при анализе заболеваний, вызванных генными факторами, очень сложно понять, как именно те гены, которые подверглись мутациям, вызвали в клетках изменения, которые привели к болезни. Существует вероятность почти в семьдесят процентов, что по крайней мере однажды в жизни у человека произойдет расстройство здоровья, вызванное воздействием дефективного гена, - речь идет в первую очередь о заболеваниях сердечно-сосудистой системы или раке. Около пятидесяти процентов самопроизвольных выкидышей происходят из-за генетических расстройств, а у одного процента новорожденных детей имеются генетические отклонения. Замена всего лишь одного нуклеинового основания на другое из общего числа в миллионы оснований, входящих в состав нашей ДНК, может привести к изменению формулы синтезируемого клеткой белка и, возможно, к появлению какой-то аномалии. Однако при том уровне знаний, каким мы сейчас располагаем, исследование последовательности ДНК какого-то конкретного человека не дает понимания того, какие генетически обусловленные заболевания могут ему грозить.

При 30 тысячах различных генов в человеческом организме синтезируется не менее 100 тысяч различных белков. В каждом из них может произойти сбой, влекущий за собой изменение функций этого белка. При наиболее распространенной форме изменения ДНК меняется всего лишь один нуклеотид из многих миллионов, содержащихся в различных секторах этого основного элемента хромосом. Можно сказать, что в ДНК каждого из нас имеются ошибки, которые, надо надеяться, не приведут к явным негативным последствиям в виде производства ненужных белков или дефицита белков, нам необходимых.

Причинно-следственная связь между аномалиями белков и конкретной болезнью может быть весьма сложной и запутанной; обычно она весьма трудна для понимания. Еще более серьезной проблемой является то, что в возникновении большинства заболеваний повинен не один, а сразу несколько генов, порой - очень большое число генов, и в этой связи почти невозможно отследить, как именно сочетание мутировавших генов приводит к заболеванию. Тем не менее последние исследования выявили 24 генетических фактора риска возникновения таких распространенных заболеваний, как диабет, биполярное расстройство, кишечное воспаление и артрит. Эти данные получены в результате обследования 17 тысяч людей.

СПИД, Меланома, Метастазы, Стволовые клетки, АТФ, Ген р53, Теломер, Герпес, Рак, Атеросклероз, Тромбоциты, Рак шейки матки, Остеопороз, Уолперт Льюис

Previous post Next post
Up