История искусственного интеллекта (продолжение)

Aug 31, 2013 22:51

Предыстория искусственного интеллекта

В цикле статей «Предыстория искусственного интеллекта» кратко описана история развития научных дисциплин, которые внесли свой вклад в область искусственного интеллекта в виде конкретных идей, воззрений и методов.

Часть IV. Неврология (период с 1861 года по настоящее время)

Неврология - это наука, посвященная изучению нервной системы, в частности мозга. Одной из величайших загадок, не поддающихся научному описанию, остается определение того, как именно мозг обеспечивает мышление. Понимание того, что мышление каким-то образом связано с мозгом, существовало в течение тысяч лет, поскольку люди обнаружили, что сильные удары по голове могут привести к умственному расстройству. Кроме того, уже давно было известно, что человеческий мозг обладает какими-то важными особенностями; еще примерно в 335 до н.э. Аристотель писал: «Из всех животных только человек имеет самый крупный мозг по сравнению с его размерами». Тем не менее, широкое признание того, что мозг является вместилищем сознания, произошло только в середине XVIII столетия. До этого в качестве возможных источников сознания рассматривались сердце, селезенка и шишковидная железа (эпифиз).
     Исследования афазии (нарушения речи) у пациентов с повреждением мозга, проведенные Полем Брока (1824-1880) в 1861 году, снова пробудили интерес к этой научной области и послужили для многих представителей медицины доказательством существования в мозгу локализованных участков, ответственных за конкретные познавательные функции. Например, этот ученый показал, что функции формирования речи сосредоточены в той части левого полушария, которая теперь называется зоной Брока. К тому времени уже было известно, что мозг состоит из нервных клеток, или нейронов, но только в 1873 году Камилл о Гольджи (1843-1926) сумел разработать надежный метод, позволяющий наблюдать за отдельными нейронами в мозгу. Этот метод использовал Сантьяго Рамон и Кахал (1852-1934) в своих пионерских исследованиях нейронных структур мозга.
    Теперь ученые располагают некоторыми данными о том, как связаны между собой отдельные области мозга и те части тела, которыми они управляют или от которых получают сенсорные данные. Оказалось, что подобная привязка может коренным образом измениться в течение нескольких недель, а у некоторых животных, по-видимому, имеется несколько вариантов такой привязки. Более того, еще не совсем понятно, как другие области могут взять на себя функции поврежденных областей. К тому же почти полностью отсутствуют обоснованные теории того, как осуществляется хранение информации в памяти индивидуума.



Комментарий к рисунку: части нервной клетки, или нейрона. Каждый нейрон состоит из тела клетки (или сомы), которое содержит ядро клетки. От тела клетки ответвляется множество коротких волокон, называемых дендритами, и одно длинное волокно, называемое аксоном. Аксон растягивается на большое расстояние, намного превышающее то, что показано в масштабе этого рисунка. Обычно аксоны имеют длину 1 см (что превышает в 100 раз диаметр тела клетки), но могут достигать 1 метра. Нейрон создает соединения с другими нейронами, количество которых может составлять от 10 до 100 000 в точках сопряжения, называемых синапсами. Сигналы распространяются от одного нейрона к другому с помощью сложной электрохимической реакции. Эти сигналы управляют активностью мозга в течение короткого интервала, а также становятся причиной долговременных изменений состояния самих нейронов и их соединений. Считается, что эти механизмы служат в мозгу основой для обучения. Обработка информации главным образом происходит в коре головного мозга, которая представляет собой самый внешний слой нейронов мозга. По-видимому, основной структурной единицей является столбец ткани, имеющий диаметр около 0,5 мм и протяженность на всю глубину коры, толщина которой в человеческом мозгу составляет около 4 мм. Каждый столбец содержит примерно 20 000 нейронов.
     Измерение активности неповрежденного мозга началось в 1929 году с изобретения электроэнцефалографа (ЭЭГ) Гансом Бергером. Разработки в области получения изображений на основе функционального магнитного резонанса позволили неврологам получать исключительно подробные изображения активности мозга, что дает возможность проводить измерения характеристик физиологических процессов, которые связаны с происходящими познавательными процессами какими-то интересными способами. Эти возможности для исследований становятся еще более широкими благодаря прогрессу в области регистрации нейронной активности отдельной клетки. Но, несмотря на эти успехи, ученые еще очень далеки от понимания того, как действительно осуществляется любой из этих познавательных процессов.
    Тем не менее, работы в области неврологии позволяют сделать поистине удивительное заключение о том, что совместная работа простых клеток может приводить к появлению мышления, действия и сознания или, другими словами, что мозг порождает разум. После этого открытия единственной реально существующей альтернативной теорией остается мистицизм, приверженцы которого провозглашают, что существует некое мистическое пространство, находящееся за пределами физического опыта, в котором функционирует разум.

Сравнение производительности человеческого мозга и компьютера
    Мозг и цифровой компьютер выполняют совершенно разные задачи и имеют различные свойства. В типичном мозгу человека имеется в 1000 раз больше нейронов, чем логических элементов в процессоре типичного компьютера высокого класса. В соответствии с законом Мура и с учетом того, что по некоторым расчетам, количество нейронов в мозгу должно удваиваться примерно через каждые 2-4 миллиона лет, может быть сделан прогноз, что количество логических элементов в процессоре станет равным количеству нейронов в мозгу примерно к 2020 году. Безусловно, эти прогнозы мало о чем говорят; кроме того, это различие в отношении количества элементов является незначительным по сравнению с различием в скорости переключения и степени распараллеливания. Микросхемы компьютера способны выполнить отдельную команду меньше чем за наносекунду, тогда как нейроны действуют в миллионы раз медленнее. Но мозг сторицей восполняет этот свой недостаток, поскольку все его нейроны и синапсы действуют одновременно, тогда как большинство современных компьютеров имеет только один процессор (но с несколькими ядрами) или небольшое количество процессоров. Таким образом, даже несмотря на то, что компьютер обладает преимуществом более чем в миллион раз в физической скорости переключения, оказывается, что мозг по сравнению с ним выполняет все свои действия примерно в 100 000 раз быстрее.

Часть V. Психология (период с 1879 года по настоящее время)

Истоки научной психологии обычно прослеживаются до работ немецкого физика Германа фон Гельмгольца (1821-1894) и его студента Вильгельма Вундта (1832-1920). Гельмгольц применил научный метод для изучения зрения человека, и выпущенная им книга «Handbook of Physiological Optics» даже в наши дни характеризуется как «непревзойденный по своей важности вклад в изучение физики и физиологии зрения человека». В 1879 году Вундт открыл первую лабораторию по экспериментальной психологии в Лейпцигском университете. Вундт настаивал на проведении тщательно контролируемых экспериментов, в которых его сотрудники выполняли задачи по восприятию или формированию ассоциаций, проводя интроспективные наблюдения за своими мыслительными процессами. Такой тщательный контроль позволил ему сделать очень многое для превращения психологии в науку, но из-за субъективного характера данных вероятность того, что экспериментатор будет стремиться опровергнуть выдвинутые им теории, оставалась очень низкой.



Взгляды, согласно которым мозг рассматривается как устройство обработки информации, характерные для представителей когнитивной психологии, прослеживаются, по крайней мере, до работ Уильяма Джеймса (1842-1910). Гельмгольц также утверждал, что восприятие связано с определенной формой подсознательного логического вывода. В Соединенных Штатах такой подход к изучению познавательных процессов был в основном отвергнут, но на факультете прикладной психологии Кембриджского университета, возглавляемом Фредериком Бартлеттом (1886-1969), удалось организовать проведение широкого спектра работ в области когнитивного моделирования. В своей книге «The Nature of Explanation» студент и последователь Бартлетта, Кеннет Крэг, привел весомые доводы в пользу допустимости применения таких «мыслительных» терминов, как убеждения и цели, доказав, что они являются не менее научными, чем, скажем, такие термины, применяемые в рассуждениях о газах, как давление и температура, несмотря на то, что речь в них идет о молекулах, которые сами не обладают этими характеристиками.
     Если живой организм несет в своей голове «модель в уменьшенном масштабе» внешней реальности и своих возможных действий, то он обладает способностью проверять различные варианты, приходить к заключению, какой из них является наилучшим, реагировать на будущие ситуации, прежде чем они возникнут, использовать знания о прошлых событиях, сталкиваясь с настоящим и будущим, и во всех отношениях реагировать на опасности, встречаясь с ними, гораздо полнее, безопаснее для себя, а также в более компетентной форме.
     В 1945 году, после смерти Крэга в результате несчастного случая во время катания на велосипеде, его работа была продолжена Дональдом Броудбентом, книга «Perception and Communication» которого включила некоторые из первых моделей информационной обработки психологических феноменов. Между тем в Соединенных Штатах работы в области компьютерного моделирования привели к созданию такого научного направления, как когнитология. Существует такое мнение, что зарождение этого направления произошло на одном из семинаров в Массачусетсском технологическом институте в сентябре 1956 года. На этом семинаре Джордж Миллер представил доклад «Vie Magic Number Seven», Ноам Хомский прочитал доклад «Three Models of Language», а Аллен Ньюэлл и Герберт Саймон представили свою работу «The Logic Theory Machine». В этих трех работах, получивших широкую известность, было показано, как можно использовать компьютерные модели для решения задач в области психологии, запоминания, обработки естественного языка и логического мышления.
     В настоящее время среди психологов находят широкое признание взгляды на то, что «любая теория познания должна напоминать компьютерную программу», т.е. она должна подробно описывать механизм обработки информации, с помощью которого может быть реализована некоторая познавательная функция.

Часть VI. Вычислительная техника (период с 1940 года по настоящее время).

Для успешного создания искусственного интеллекта требуется, во-первых, интеллект и, во-вторых, артефакт. Наиболее предпочтительным артефактом в этой области всегда был компьютер. Современный цифровой электронный компьютер был изобретен независимо и почти одновременно учеными трех стран, участвующих во Второй мировой войне. Первым операционным компьютером было электромеханическое устройство «Heath Robinson», созданное в 1940 году группой Алана Тьюринга для единственной цели - расшифровки сообщений, передаваемых немецкими войсками. В 1943 году та же группа разработала мощный компьютер общего назначения, получивший название «Colossus», в конструкции которого применялись электронные лампы. Первым операционным программируемым компьютером был компьютер Z-3, изобретенный Конрадом Цузе в Германии в 1941 году. Цузе изобрел также числа с плавающей точкой и создал первый язык программирования высокого уровня, «Plankalkul». Первый электронный компьютер, ABC, был собран Джоном Атанасовым и его студентом Клиффордом Берри в период с 1940 по 1942 год в университете штата Айова. Исследования Атанасова почти не получили поддержки или признания; как оказалось, наибольшее влияние на развитие современных компьютеров оказал компьютер ENIAC, разработанный в составе секретного военного проекта в Пенсильванском университете группой специалистов, в состав которой входили Джон Мочли и Джон Экерт.



За прошедшее с тех пор полстолетие появилось несколько поколений компьютерного аппаратного обеспечения, причем каждое из них характеризовалось увеличением скорости и производительности, а также снижением цены. Производительность компьютеров, созданных на основе кремниевых микросхем, удваивается примерно через каждые 18 месяцев, и такая скорость роста наблюдается уже в течение двух десятилетий. После достижения пределов этого роста потребуется молекулярная инженерия или какая-то другая, новая технология.
Безусловно, вычислительные устройства существовали и до появления электронного компьютера.
     Первым программируемым устройством был ткацкий станок, изобретенный в 1805 году Жозефом Марией Жаккардом (1752-1834), в котором использовались перфокарты для хранения инструкций по плетению узоров ткани. В середине XIX столетия Чарльз Бэббидж (1792-1871) разработал две машины, но ни одну из них не успел закончить. Его «разностная машина» предназначалась для вычисления математических таблиц, используемых в инженерных и научных проектах. В дальнейшем эта машина была построена и ее работа продемонстрирована в 1991 году в лондонском Музее науки. Другой замысел Бэббиджа, проект «аналитической машины», был гораздо более амбициозным: в этой машине предусмотрено использование адресуемой памяти, хранимых программ и условных переходов, и она была первым артефактом, способным выполнять универсальные вычисления. Коллега Бэббиджа Ада Лавлейс, дочь поэта Лорда Байрона, была, возможно, первым в мире программистом. В ее честь назван язык программирования Ada. Она писала программы для незаконченной аналитической машины и даже размышляла над тем, что эта машина сможет играть в шахматы или сочинять музыку.
     Искусственный интеллект во многом обязан также тем направлениям компьютерных наук, которые касаются программного обеспечения, поскольку именно в рамках этих направлений создаются операционные системы, языки программирования и инструментальные средства, необходимые для написания современных программ. Но эта область научной деятельности является также одной из тех, где искусственный интеллект в полной мере возмещает свой долг: работы в области искусственного интеллекта стали источником многих идей, которые затем были воплощены в основных направлениях развития компьютерных наук, включая разделение времени, интерактивные интерпретаторы, персональные компьютеры с оконными интерфейсами и поддержкой позиционирующих устройств, применение среды ускоренной обработки, создание типов данных в виде связных списков, автоматическое управление памятью и ключевые концепции символического, функционального, динамического и объектно-ориентированного программирования.

Часть VII. Теория управления и кибернетика (период с 1948 года по настоящее время)

Первое самоуправляемое устройство было построено Ктесибием из Александрии (примерно в 250 году до н.э.); это были водяные часы с регулятором, который поддерживал поток воды, текущий через эти часы с постоянным, предсказуемым расходом. Это изобретение изменило представление о том, на что могут быть способны устройства, созданные человеком. До его появления считалось, что только живые существа способны модифицировать свое поведение в ответ на изменения в окружающей среде. К другим примерам саморегулирующихся систем управления с обратной связью относятся регулятор паровой машины, созданный Джеймсом Уаттом (1736-1819), и термостат, изобретенный Корнелисом Дреббелем (1572-1633), который изобрел также подводную лодку. Математическая теория устойчивых систем с обратной связью была разработана в XIX веке.



Центральной фигурой в создании науки, которая теперь именуется «теорией управления», был Норберт Винер (1894-1964). Винер был блестящим математиком, который совместно работал со многими учеными, включая Бертрана Рассела, под влиянием которых у него появился интерес к изучению биологических и механических систем управления и их связи с познанием. Как и Крэг (который также использовал системы управления в качестве психологических моделей), Винер и его коллеги Артуро Розенблют и Джулиан Бигелоу рассматривали целенаправленное поведение как обусловленное действие регуляторного механизма, пытающего минимизировать «ошибку» - различие между текущим и целевым состоянием. В конце 1940-х годов Винер совместно с Уорреном Мак-Каллоком, Уолтером Питтсом и Джоном фон Нейманом организовал ряд конференций, на которых рассматривались новые математические и вычислительные модели познания; эти конференции оказали большое влияние на взгляды многих других исследователей в области наук о поведении. Книга Винера «Cybernetics», в которой было впервые дано определение кибернетики как науки, стала бестселлером и убедила широкие круги общественности в том, что мечта о создании машин, обладающих искусственным интеллектом, воплотилась в реальность.
     Предметом современной теории управления, особенно той ветви, которая получила название стохастического оптимального управления, является проектирование систем, которые максимизируют целевую функцию во времени. Это примерно соответствует представлению об искусственном интеллекте как о проектировании систем, которые действуют оптимальным образом. Почему же в таком случае искусственный интеллект и теория управления рассматриваются как две разные научные области, особенно если учесть, какие тесные взаимоотношения связывали их основателей? Ответ на этот вопрос состоит в том, что существует также тесная связь между математическими методами, которые были знакомы участникам этих разработок, и соответствующими множествами задач, которые были охвачены в каждом из этих подходов к описанию мира. Дифференциальное и интегральное исчисление, а также алгебра матриц, являющиеся инструментами теории управления, в наибольшей степени подходят для анализа систем, которые могут быть описаны с помощью фиксированных множеств непрерывно изменяющихся переменных; более того, точный анализ, как правило, осуществим только для линейных систем. Искусственный интеллект был отчасти основан как способ избежать ограничений математических средств, применявшихся в теории управления в 1950-х годах. Такие инструменты, как логический вывод и вычисления, позволили исследователям искусственного интеллекта успешно рассматривать некоторые проблемы (например, понимание естественного языка, зрение и планирование), полностью выходящие за рамки исследований, предпринимавшихся теоретиками управления.

Часть VIII. Лингвистика (период с 1957 года по настоящее время)

В 1957 году Б.Ф. Скиннер опубликовал свою книгу «Verbal Behavior». Это был всеобъемлющий, подробный отчет о результатах исследований по изучению языка, который был написан наиболее выдающимся экспертом в этой области. Но весьма любопытно то, что рецензия к этой книге стала не менее известной, чем сама книга. Автором этой рецензии был Ноам Хомский, который сам только что опубликовал книгу с изложением своей собственной теории, Syntactic Structures. Хомский показал, что бихевиористская теория (направление в американской психологии ХХ в., отрицающее сознание как предмет научного исследования и сводящее психику к различным формам поведения, понятого как совокупность реакций организма на стимулы внешней среды) не позволяет понять истоки творческой деятельности, осуществляемой с помощью языка, - она не объясняет, почему ребенок способен понимать и складывать предложения, которые он до сих пор никогда еще не слышал. Теория Хомского, основанная на синтаксических моделях, восходящих к работам древнеиндийского лингвиста Панини (примерно 350 год до н.э.), позволяла объяснить этот феномен, и, в отличие от предыдущих теорий, оказалась достаточно формальной для того, чтобы ее можно было реализовать в виде программ.



Таким образом, современная лингвистика и искусственный интеллект, которые «родились» примерно в одно и то же время и продолжают вместе расти, пересекаются в гибридной области, называемой вычислительной лингвистикой или обработкой естественного языка. Вскоре было обнаружено, что проблема понимания языка является гораздо более сложной, чем это казалось в 1957 году. Для понимания языка требуется понимание предмета и контекста речи, а не только анализ структуры предложений. Это утверждение теперь кажется очевидным, но сам данный факт не был широко признан до 1960-х годов. Основная часть ранних работ в области представления знаний (науки о том, как преобразовать знания в такую форму, с которой может оперировать компьютер) была привязана к языку и подписывалась исследованиями в области лингвистики, которые, в свою очередь, основывались на результатах философского анализа языка, проводившегося в течение многих десятков лет.

Что такое искусственный интеллект?

Искусственный интеллект можно определить как научную дисциплину, которая занимается моделированием разумного поведения. Это определение имеет один существенный недостаток - понятие интеллекта трудно объяснить. Большинство людей уверено, что смогут отличить «разумное поведение», когда с ним столкнутся. Однако вряд ли кто-нибудь сможет дать интеллекту определение, достаточно конкретное для оценки предположительно разумной компьютерной программы и одновременно отражающее жизнеспособность и сложность человеческого разума.



Итак, проблема определения искусственного интеллекта сводится к проблеме определения интеллекта вообще: является ли он чем-то единым, или же этот термин объединяет набор разрозненных способностей? В какой мере интеллект можно создать? Что такое творчество? Что такое интуиция? Можно ли судить о наличии интеллекта только по наблюдаемому поведению? Как представляются знания в нервных тканях живых существ, и как можно применить это в проектировании интеллектуальных устройств? Возможно ли вообще достичь разумности посредством компьютерной техники, или же сущность интеллекта требует богатства чувств и опыта, присущего лишь биологическим существам?
На эти вопросы ответа пока не найдено, но все они помогли сформировать задачи и методологию, составляющие основу современного искусственного интеллекта. Отчасти привлекательность искусственного интеллекта в том и состоит, что он является оригинальным и мощным оружием для исследования этих проблем. Искусственный интеллект предоставляет средство и испытательную модель для теорий интеллекта: эти теории могут быть сформулированы на языке компьютерных программ, а затем - испытаны.
По этим причинам определение искусственного интеллекта, приведенное в начале статьи, не дает однозначной характеристики для этой области науки. Оно лишь ставит новые вопросы и открывает парадоксы в области, одной из главных задач которой является поиск самоопределения. Однако проблема поиска точного определения искусственного интеллекта вполне объяснима. Изучение искусственного интеллекта - еще молодая дисциплина, и ее структура, круг вопросов и методики не так четко определены, как в более зрелых науках, например, физике.
     Искусственный интеллект призван расширить возможности компьютерных наук, а не определить их границы. Одной из важных задач, стоящих перед исследователями, является поддержание этих усилий ясными теоретическими принципами.
     Любая наука, включая и искусственный интеллект, рассматривает некоторый круг проблем и разрабатывает подходы к их решению. История искусственного интеллекта, рассказы о личностях и их гипотезах, положенных в основу этой науки, возможно, сможет объяснить, почему некоторые проблемы стали доминировать в этой области и почему для их решения были взяты на вооружение методы, используемые сегодня.

Источник

компьютерная лингвистика, Н. Хомский, искусственный интеллект, лингвистика, интеллект, компьютер, мозг

Previous post Next post
Up