На основе данных о коммуникации людей в любой социальной сети (онлайновой, типа ФБ, или офлайновой - в реальной жизни) можно выявить скрытую иерархическую структуру среди участников сетевых коммуникаций.
Это делается путем анализа асимметричных моделей взаимодействий участников.
Подобные иерархии существуют в любых социальных группах: от птиц, приматов и слонов до людей. Все эти группы организованы в соответствии с иерархиями доминирования, определяющими модели повторяющихся взаимодействий, при которых доминирующие особи склонны утверждать себя над менее влиятельными членами групп.
Чем больше и сложнее сеть участников социальных взаимодействий, тем больше в нем скрытых иерархий, порою неведомых самим участникам коммуникаций.
Выявление архитектуры таких иерархий - критически важная задача для:
- понимания характера существующих и предсказания возникновения новых иерархий;
- увязки этих иерархий со «струями и течениями» социальных взаимодействий;
- оказания влияния на них в целях управления динамикой социальных коммуникаций.
Поскольку задача столь важная, то для ее решения уже разработаны несколько подходов, в каждом из которых построено по несколько типов алгоритмических моделей и, соответственно, алгоритмов выявления иерархий.
Алгоритмов много, но их производительность и масштабирование до последнего времени оставляли желать лучшего.
Новая модель и алгоритм SpringRank навеяны элементарной физической аналогией:
- представить социальную сеть коммуникаций, как физическую систему, в которой между каждой парой участников натянута ориентированная пружина определенной длины и упругости.
Идея нового алгоритма - минимизировать общую энергию всех пружин системы.
И поскольку эта задача оптимизации требует только линейной алгебры, ее можно решить для сетей с миллионами узлов и ребер за считанные секунды.
Натурные испытания алгоритма SpringRank на синтетических и реальных наборах данных (включая данные о поведении животных, найме преподавателей, сетях социальной поддержки и спортивных турнирах) показали замечательные результаты - алгоритм жутко эффективен, как по скорости, так и по масштабируемости.
Он также может выявлять и предсказывать появление ненаблюдаемых ребер в сети, - так сказать выявлять «скрытые пружины», влияющие на поведение общества.
Превосходство алгоритма SpringRank над другими широко используемыми алгоритмами при тестировании на синтетических наборах данных, где ранжирование уже известно.
Принципиальное преимущество SpringRank перед прежними алгоритмами в том, что:
- старые алгоритмы, как правило, лишь «выявляют элиту» - дают высокие ранги небольшому числу важных узлов, что дает мало информации об иерархии узлов с более низким рейтингом;
- новый алгоритм выявляет всю многоуровневую иерархию, - и в том числе, латентную: неявную, скрытую и неочевидную.
Новый алгоритм, возможно, произведет революцию в т.н. «системах одобрения» (Systems of Endorsement ), в которых статус участников обусловлен престижем, репутацией или социальным положением.
К ним, в той или иной мере, относится почти все: от рекомендательных систем в Интернете, до социального устройства общества.
/Источник/