See also:
cheap cialis |
The Lancet Oncology, Early Online Publication, 19 November 2010
Navitoclax, a targeted high-affinity
cheap viagra of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity
Original TextProf
Wyndham H Wilson MD
a
, Prof
Owen A O'Connor MD
b, Prof
Myron S Czuczman MD
c,
Ann S LaCasce MD
d,
John F Gerecitano MD
e, Prof
John P Leonard MD
f,
Anil Tulpule MD
g,
Kieron Dunleavy MD
a,
Hao Xiong PhD
h,
Yi-Lin Chiu PhD
h,
Yue Cui PhD
h,
Todd Busman MS
h,
Steven W Elmore PhD
h,
Saul H Rosenberg PhD
h,
Andrew P Krivoshik MD
h,
Sari H Enschede MD
h,
Rod A Humerickhouse MD
hSummary
Background
Proteins of the BCL-2 family regulate clonal selection and survival of lymphocytes, and are frequently overexpressed in lymphomas. Navitoclax is a targeted high-affinity small molecule that inhibits the anti-apoptotic activity of BCL-2 and BCL-XL. We aimed to assess the safety and antitumour activity of navitoclax in patients with lymphoid tumours, and establish the drug's pharmacokinetic and pharmacodynamic profiles.
Methods
In this phase 1 dose-escalation study, patients (aged ≥18 years) with relapsed or refractory lymphoid malignancies were enrolled and treated at seven sites in the USA between November, 2006, and November, 2009. A modified Fibonacci 3+3 design was used to assign patients to receive oral navitoclax once daily by one of two dosing schedules: intermittently for the first 14 days of a 21-day cycle (14/21) at doses of 10, 20, 40, 80, 110, 160, 225, 315, or 440 mg/day; or continuously for 21 days of a 21-day cycle (21/21) at doses of 200, 275, 325, or 425 mg/day. Study endpoints were safety, maximum tolerated dose, pharmacokinetic profile, pharmacodynamic effects on platelets and T cells, and antitumour activity. This trial is registered with
ClinicalTrials.gov, number
NCT00406809.
Findings
55 patients were enrolled (median age 59 years, IQR 51-67), 38 to receive the 14/21 dosing schedule, and 17 to receive the 21/21 dosing schedule. Common toxic effects included grade 1 or 2 anaemia (41 patients), infection (39), diarrhoea (31), nausea (29), and fatigue (21); and grade 3 or 4 thrombocytopenia (29), lymphocytopenia (18), and neutropenia (18). On the intermittent 14/21 schedule, dose-limiting toxic effects were hospital admissions for bronchitis (one) and pleural effusion (one), grade 3 increase in aminotransferases (one), grade 4 thrombocytopenia (one), and grade 3 cardiac arrhythmia (one). To reduce platelet nadir associated with intermittent 14/21 dosing, we assessed a 150 mg/day lead-in dose followed by a continuous 21/21 dosing schedule. On the 21/21 dosing schedule, two patients did not complete the first cycle and were excluded from assessment of dose-limiting toxic effects; dose-limiting toxic effects were grade 4 thrombocytopenia (one), grade 3 increase in aminotransferases (one), and grade 3 gastrointestinal bleeding (one). Navitoclax showed a pharmacodynamic effect on circulating platelets and T cells. Clinical responses occurred across the range of doses and in several tumour types. Ten of 46 patients with assessable disease had a partial response, and these responders had median progression-free survival of 455 days (IQR 40-218).
Interpretation
Navitoclax has a novel mechanism of peripheral thrombocytopenia and T-cell lymphopenia, attributable to high-affinity inhibition of BCL-XL and BCL-2, respectively. On the basis of these findings, a 150 mg 7-day lead-in dose followed by a 325 mg dose administered on a continuous 21/21 dosing schedule was selected for phase 2 study.
Funding
Abbott Laboratories, Genentech, and National Cancer Institute, National Institutes of Health.