Foreign Affairs(США): дивный новый мир биологии

Jul 04, 2021 18:49


04.07.2021 г.
Лори Гаррет (Laurie Garrexf

Foreign Affairs, США

ЧАСТЬ 2
( НАЧАЛО)

Век синтетической биологии уже настал: ученые научились активировать генóм - и сам этот факт, вероятно, заставит людей изменить представления об окружающем мире. В результате, появится «синтетическая геномика» на базе «цифровой биологии», и ученые смогут создавать новые модификации ДНК, причем, для вполне конкретных целей. К сожалению, у этих достижений есть и своя оборотная сторона: глобальный биотерроризм. Возникает вопрос: каким же образом новый биологический мир, в котором появились биотехнологии двойного назначения, повлияет на этические и научные вопросы, а также на область национальной безопасности?



© AP Photo, Ron Edmond



Я считаю, что дети - наше будущее

Те, кто высказывается в пользу того, чтобы не препятствовать быстро развивающимся исследованиям в области синтетической биологии, таких, например, как эксперименты Дрю Энди из Стэнфордского университета и Тодда Куйкена из Международного центра поддержки ученых Вудро Вильсона (последний является одним из лидеров ширящегося самостийного международного движения в области биологии), настаивают на том, что внимание нужно уделять не только угрозам, исходящим от синтетической биологии, но и открывающимся перспективам. По мнению Энди, доля генной инженерии и синтетической биологии в экономике США уже равна двум процентам, причем данный сектор растет на 12 процентов ежегодно. Возглавляемая им кафедра биоинженерии Стэнфордского университета ежегодно получает бюджетное финансирование в размере полумиллиарда долларов. Энди предсказывает, что синтетическая биология в ближайшем будущем породит экономический и технологический бум, как в самом начале нынешнего века это сделали Интернет и социальные медиатехнологии.

Многие студенты-биологи в наше время считают, что генная инженерия существующих в природе форм жизни и создающая новые - это передний край биологии. На ярмарках научных проектов и во время проведения экспериментов студентам некогда задумываться о сущности исследований двойного назначения, они слишком торопятся попасть в будущее. В 2004 году в Массачусетском технологическом институте стартовали Международные соревнования по синтетической биологии (IGEM), на которых студенческие команды соревновались в конструировании новых форм жизни. А недавно к участию в этом конкурсе решено допустить и школьников. В прошлом году к участию в конкурсе были допущены более 190 заявок от молодых исследователей из 34 стран. То, что кажется предыдущим поколениям фантастикой, для молодежи становится повседневностью.

За несколько прошедших лет исследования в области синтетической биологии относительно удешевились и упростились. В 2003 году в рамках проекта “Геном человека” было завершено первое полное секвенирование ДНК человека. Стоимость проекта составила несколько миллиардов долларов, при этом в проекте участвовали тысячи ученых и техников из более 160 лабораторий, продолжительность проекта - более десяти лет. А уже десять лет спустя стало возможным купить секвенатор, выложив за него всего несколько тысяч долларов, и провести секвенирование генома в домашних условиях менее чем за 24 часа. Еще меньше понадобится времени частным компаниям для расшифровки генома на коммерческих условиях, причем цены на эту услугу продолжают снижаться, затраты упали настолько, что оборудование для секвенирования уже стало не выгодно размещать в развитых странах, и в результате значительную его часть перебазировали в Китай. В огромных лабораториях под Пекином, Шанхаем и Шэньчжэнем автоматизированные секвенаторы сейчас вовсю расшифровывают ДНК, а объемы информации, загружаемой ежемесячно в базы данных, намного превосходит весь суммарный ее объем, накопленный с 1953 года, когда Дж. Уотсон и Ф. Крик открыли ДНК, по 2003 год, когда Вентер синтезировал геном phi-X174.

Чтобы понять, чем занимается современная синтетическая биология, обратимся к примеру. Вот, скажем, перед нами стоит такая задача: как обнаружить мышьяк, содержащийся в загрязненных месторождениях грунтовых вод? А теперь представьте, что можно будет создавать безвредные бактерии, которые начнут светиться в воде, загрязненной мышьяком, - как вам такая идея? Нет-нет, таких существ в природе нет, но есть же существа которые люминесцируют (светлячки и некоторые виды рыб). В некоторых случаях эти организмы светятся только когда спариваются или чувствуют угрозу - это своеобразные биологические переключатели. Существуют также и другие микроорганизмы, которые могут реагировать на присутствие мышьяка. К тому же существует бесчисленное множество безвредных для человека бактерий, с которыми можно спокойно проводить эксперименты.

Итак, нам требуется существо с нужными свойствами, для этого необходимо установить программу на своем ноутбуке и, подключившись к коммерческим базам данных, найти требуемые части ДНК, отвечающие за люминесценцию и за реакцию на мышьяк. После чего заказчику остается только купить эти безвредные бактерии. Затем вы просто должны вставить полученный код в ДНК бактерии, а потом убедиться в том, что с бактерии живы и способны себя самовоспроизводить. Теперь осталось только взять загрязненную мышьяком бутылку воды, добавить туда несколько искусственных бактерий и встряхнуть ее: если вода начнет светиться, значит, мышьяк обнаружен. (Здесь мы в сжатом виде описали опыты, которые на самом были деле проведены командой из Университета Эдинбурга на Международных соревнованиях по синтетической биологии (IGEM) в 2006 году).

Самая сложная часть задачи заключается в том, чтобы вставить фрагменты ДНК в последовательность, но скоро и эта задача перестанет быть трудной. В области биосинтеза все больше используется 3-D печать. Теперь ученые могут загрузить нуклеотиды в 3-D “биопринтер”, генерирующий геномы. К тому же возможна научная кооперация на глобальном уровне. Скажем, одна команда ученых проектирует генетическую последовательность на компьютере в одной части земного шара и отправляют данный код на принтер, расположенный где-нибудь в другой точке Земли у совсем другого пользователя, подключенного к интернету. Но полученный код может быть использован как в благих целях, например, для создания лекарства или вакцины, так и в преступных. В последнем случае, представьте, что окажется возможным превратить вирус phi-X174, с которым Вентер работал десять лет назад, в микроорганизм, убивающий клетки человеческого организма, или изготовить какие-нибудь опасные бактерии, устойчивые к антибиотикам, а то и вовсе создать новый штамм вируса.

Информацию, пожалуйста!

По мнению экспертов в области национальной безопасности и правоохранительной деятельности, внимательно наблюдающих за биологической революцией, на первый план выходит следующая проблема - информация. С одной стороны, практически все ныне действующее законодательство в этой области, как отдельных стран, так и международное, определяет правовой режим операций с патогенными микроорганизмами (например, с вирусом Эбола) и осуществляет их мониторинг, однако отследить всю информацию практически невозможно. Информацию о генетическом коде можно спрятать где хочешь, например, боевики Аль-Каиды* (террористическая организация, запрещена в РФ) скрыли инструкции по осуществлению террористических актов внутри порнокассет, а с помощью невинных твит-сообщений можно перенаправить получателя в какую-нибудь нелегальную область интернета, где хранятся геномные коды, всегда готовые к загрузке на 3-D принтере. Получается, что совсем неожиданно проблема биологии стала вдруг проблемой информационной безопасности.

В феврале 2013 года на второй саммит ВОЗ, посвященный исследованиям двойного назначения (DURC), около трети ученых и правительственных чиновников прибыли из Соединенных Штатов. Они представляли не менее 15 различных организаций вроде ФБР, Центра по контролю и профилактике болезней, Министерство обороны и Управление торгового представителя США. Хотя на саммите были представлены и остальные страны, все же сигнал, посланный администрацией Обамы, был ясным и недвусмысленным - обеспокоенность.

Каждая страна-участница Конвенции о биологическом оружии должна наделить полномочиями одну из своих организаций, обязав ее нести ответственность за обеспечение соблюдения положений конвенции. С американской стороны такой организацией является ФБР, которая взаимодействует с научным сообществом и пытается выявлять исследования двойного назначения (DURC). Правда, небольшой офис ФБР несколько ужался в результате недавно проведенных Конгрессом сокращений бюджета и секвестра. Но, в отличие от биологов, ФБР не обладает таким же опытом и научными знаниями, и поэтому на практике для осуществления контроля ФБР должно полагаться на мнение ученых - а эта ситуация, очевидно, проблематичная.

Другие страны пытались решить проблему контроля исследований DURC другими способами. Например, в Дании существует процедура лицензирования как государственных, так и частных научных исследований. При этом перед выполнением экспериментов исследователи обязаны официально информировать о своих реальных целях, а государственные органы должны сначала проверять, насколько лаборатории и персонал соответствуют требованиям безопасности, и только после этого выдавать лицензии, в которых определяется режим их работы. Некоторые заявки и лицензии получают гриф секретности, обеспечивая тем самым коммерческую тайну в частном секторе. Однако масштабы биологических исследований в стране очень небольшие: в настоящее время всего выдано менее 100 лицензий.

С помощью закона об экспортном контроле правительство Нидерландов стремилось не допустить публикации работы Фушье, посвященной модификации вируса H5N1, поскольку информация, содержащаяся в этой работе, считается товаром, требующим особого режима распространения. Хотя после первого саммита ВОЗ правительство и сняло запрет на публикацию, некоторое время спустя окружной суд постановил, что работа Фушье нарушает законодательство ЕС. Однако Фушье решил обжаловать решение суда, что, несомненно, серьезно повлияет на характер обмена информацией о подобных исследованиях во всей Европе. Один из выводов, который США извлекли для себя после всем известных утечек информации, заключается в том, что установить надежный контроль над передачей цифровой информации между сторонами может оказаться невозможным, если вовлеченные стороны действуют решительно и изобретательно.

Оценив перспективность биологического конструирования, многие биологи теперь относятся к своей работе в области геномики как к «штрихкодированию». Подобно производителям, которые ставят штрихкоды на товарах, чтобы при сканировании продемонстрировать идентичность продукта и цены, биологи точно так же хотят секвенировать генетические последовательности растений, животных, рыб, птиц и микроорганизмов, существующих в мире, и каждому из этих существ сопоставить свою последовательность ДНК - можно сказать, уникальный для данного вида «штрихкод». И тогда можно будет каждому синтезированному организму и каждому организму, подвергшемуся GOF-мутациям, сопоставить свой «штрихкод». В результате спецслужбы и органы здравоохранения смогут отслеживать перемещение, использование и создание искусственных или измененных организмов. Такой подход уже применяют в отношении генетически модифицированных семян и сельхозпродукции, с таким же успехом его можно использовать для исследований двойного назначения (DURC). При этом право проставления штрихкодов должно закрепляться лишь за исследователями, а не потенциальными террористами. В общем, у данной проблемы нет быстрых и простых технологических решений.

От ВОЗ до Хаджа

В 2013 году на саммите Всемирной организации здравоохранения не удалось достичь каких-либо значимых договоренностей по исследованиям двойного назначения (DURC). ВОЗ, испытывающая финансовые проблемы, не смогла изыскать ресурсы, чтобы выполнить рекомендации, разработанные на саммите. Хуже того, участники саммита даже не смогли заложить общий фундамент под обсуждаемый вопрос, а слаборазвитые страны поняли, что данный вопрос не стоит в числе приоритетных. К тому же африканские представители посетовали на то, что их страны не обладают нужными ресурсами для проведения в жизнь мер, обеспечивающих биологическую безопасность. Как заявил на условиях анонимности некий представитель одной африканской страны, «именно мы - вот кто на самом деле страдает от всех этих болезней. Именно мы нуждаемся в этих исследованиях, но не можем их проводить. У нас нет средств. У нас нет ресурсов. А теперь, в связи с обеспокоенностью по поводу исследований двойного назначения, наши люди из соображений безопасности не могут попасть в ваши лаборатории, чтобы работать там [в Соединенных Штатах или Европе]. Вольно или невольно, все эти опасения по поводу DURC-исследований нас тормозят».

Крупные развивающиеся страны вроде Бразилии, Китая, Индии и ЮАР на этой трехдневной конференции практически не были заметны. Их интересовал лишь вопрос о том, кто будет выдавать патенты на продукты, созданные в ходе DURC-исследований, они настаивали на необходимости передачи технологий или же нудно рассказывали о том, насколько строго в их странах контролируется исследовательская работа. В частности, китайские делегаты уверяли собравшихся в том, что в Китае предприняты все необходимые меры для обеспечения биологической безопасности. Через два месяца после встречи группа ученых из китайской Национальной проверочной лаборатории по выявлению птичьего гриппа при Харбинском институте ветеринарных исследований использовала GOF-методы для синтезирования 127 форм вируса гриппа, все они основаны на штамме гриппа H5N1 в сочетании с генетическими атрибутами, найденными у десятков других типов гриппа. Китайцы опирались в основном на работы Фушье и Каваоки, несколько их модифицировав. Пять из синтезированных ими искусственных штаммов опаснейшей разновидности гриппа оказались способны заражать морских свинок воздушно-капельным путем, приводя к летальному исходу.

Около десяти лет назад вирусологи разных стран забили тревогу. Им стало известно, что американские ученые решили вставить в вирус оспы специальный ген, благодаря которому раствор, зараженный оспой, окрашивался в зеленый цвет. Инновационное изобретение американских ученых, предназначенное для выявления смертельного вируса, назвали «преступлением против человечности».

И, наоборот, в начале нынешнего года, когда в Китае появился новый тип птичьего гриппа H7N9, вирусологи стали уповать на GOF-исследования, подчеркнув их важность для здравоохранения. После изучения генетической структуры этого вируса, Фушье вместе с Каваокой заявили о его опасности, отметив, что те же самые генетические изменения, которые они внесли в вирус H5N1, уже присутствуют в штамме H7N9. В августе нынешнего года группа Фушье опубликовала результаты экспериментов, которые показали, что вирус H7N9 способен инфицировать хорьков и заражать животных воздушно-капельным путем. Фушье, Каваока и еще 20 других вирусологов призвали к проведению обстоятельной серий GOF-экспериментов с вирусом H7N9, чтобы синтезировать генетическую разновидность гриппа, создав из птичьего гриппа штамм, способный заражать человека воздушно-капельным путем, а это позволит вирусологам лучше подготовиться к борьбе с ним.

Пока власти соответствующих стран, регулирующие подобные исследования в области здравоохранения, обсуждают просьбу ученых провести опыты с вирусом H7N9, другие микроорганизмы также начинают создавать проблемы, которые могут быть решены с использованием GOF методов. В июне 2012 года в Саудовской Аравии, как гром среди ясного неба, появился «ближневосточный респираторный синдром» (MERS), и уже к сентябрю 2013 года от этого вируса пострадали 132 человека, половина из которых погибла. Хотя MERS и напоминает ОРВИ (т.е. «тяжёлый острый респираторный синдром» - SARS), о его происхождении многое по-прежнему неизвестно. Наблюдались многочисленные случаи передачи вируса MERS от человека к человеку, особенно в больницах, дошло до того, что власти Саудовской Аравии подняли тревогу по поводу возможного распространения MERS во всем исламском мире. Заметим, что ни вакцина, ни другое лекарство от MERS на сегодняшний день не найдено. Если будет разрешено проводить эксперименты по определению заражающего воздействия вируса H7N9, то почему бы ученым не попросить такое же разрешение на проведение экспериментов с MERS, чтобы изучить его заразную форму, дабы предотвратить ее распространение, скажем, среди паломников во время хаджа?

Когда в начале 1980-х появился ВИЧ, никто не знал достоверно о том, как именно этот вирус передается. Многие медики полагали, что 99-процентную заболеваемость с летальным исходом можно снизить, если полностью исключить контакт с заразившимися людьми. Во всех школах США запретили появляться ученикам, у которых выявлена положительная реакция на ВИЧ, а большинство спортивных лиг запретили играть зараженным спортсменам (все это происходило до тех пор, пока звезда NBA Мэджик Джонсон официально не заявил о том, что он тоже заражен, в результате чего возникло движение против изоляции ВИЧ-инфицированных людей). Если бы это было технически возможно, может нужно было модифицировать этот вирус, придав ему способность распространяться воздушно-капельным путем или через случайное прикосновение, чтобы потом его изучат.

ПРОДОЛЖЕНИЕ

МИКРОБИОЛОГИЯ, ИССЛЕДОВАНИЯ, БИОЛОГИЧЕСКОЕ ОРУЖИЕ, ТЕХНОЛОГИИ

Previous post Next post
Up