СУПЕРКОМПЬЮТЕРЫ: ВЧЕРА, СЕГОДНЯ, ЗАВТРА

Dec 20, 2019 00:05



№5, 2000
У большинства людей слово "компьютер" ассоциируется в первую очередь с персоналкой, которую можно увидеть сегодня не только в любом офисе, но и во многих квартирах. В самом деле, мы живем в эпоху, когда персональный компьютер вошел буквально в каждый дом. Однако не стоит забывать, что ПК - это лишь часть компьютерного мира, где существуют гораздо более мощные и сложные вычислительные системы, недоступные рядовому пользователю. Многие, наверно, слышали о компьютере по имени Deep Blue, который в 1997 году обыграл самого Гарри Каспарова. Интуитивно понятно, что такая машина не могла быть простой персоналкой. Другой пример - отечественный компьютер МВС-1000 производительностью 200 миллиардов операций в секунду, недавно установленный в Межведомственном суперкомпьютерном центре в Москве. Кроме того, в прессе время от времени появляются сообщения о нелегальных поставках в Россию вычислительной техники, попадающей под эмбарго американского правительства.


Открытие межведомственного суперкомпьютерного центра в Президиуме Российской академии наук. На переднем плане 16-процессорный суперкомпьютер Hewlett-Packard V2250.


ASCI RED, детище программы Accelerated Strategic Computing Initiative, - самый мощный на сегодняшний день компьютер.


CRAY T3E - массивно-параллельный компьютер фирмы Тега Computer Company.


Вычислительный кластер Московского государственного университета им. М. В. Ломоносова - минимальная стоимость, суперкомпьютерная производительность. В настоящий момент это самая мощная вычислительная система, установленная в вузе России.


Наука и жизнь // Иллюстрации
Подобные компьютеры для многих так и остаются тайной за семью печатями, окруженной ореолом ассоциаций с чем-то очень большим: огромные размеры, сверхсложные задачи, крупные фирмы и компании, невероятные скорости работы и т.д. Одним словом, супер-ЭВМ, что-то далекое и недоступное. Между тем, если вам хотя бы раз приходилось пользоваться услугами серьезных поисковых систем в Интернете (см. "Наука и жизнь" № 11, 1999 г.), вы, сами того не подозревая, имели дело с одним из приложений суперкомпьютерных технологий.
Доктор физико-математических наук В. ВОЕВОДИН, заместитель директора Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова.
ЧТО ТАКОЕ СУПЕРКОМПЬЮТЕР
Считается, что супер-ЭВМ - это компьютеры с максимальной производительностью. Однако быстрое развитие компьютерной индустрии делает это понятие весьма и весьма относительным: то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает. Производительность первых супер-ЭВМ начала 70-х годов была сравнима с производительностью современных ПК на базе традиционных процессоров Pentium. По сегодняшним меркам ни те, ни другие к суперкомпьютерам, конечно же, не относятся.
В любом компьютере все основные параметры взаимосвязаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. Отсюда простой вывод: супер-ЭВМ - это компьютер, имеющий не только максимальную производительность, но и максимальный объем оперативной и дисковой памяти в совокупности со специализированным программным обеспечением, с помощью которого этим монстром можно эффективно пользоваться.
Суперкомпьютерам не раз пытались давать универсальные определения - иногда они получались серьезными, иногда ироничными. Например, как-то предлагалось считать суперкомпьютером машину, вес которой превышает одну тонну. Несколько лет назад был предложен и такой вариант: суперкомпьютер - это устройство, сводящее проблему вычислений к проблеме ввода/вывода. В самом деле, задачи, которые раньше вычислялись очень долго, на супер-ЭВМ выполняются мгновенно, и почти все время теперь уходит на более медленные процедуры ввода и вывода данных, производящиеся, как правило, с прежней скоростью.
Так что же такое современный суперкомпьютер? Самая мощная ЭВМ на сегодняшний день - это система Intel ASCI RED, построенная по заказу Министерства энергетики США. Чтобы представить себе возможности этого суперкомпьютера, достаточно сказать, что он объединяет в себе 9632 (!) процессора Pentium Pro, имеет более 600 Гбайт оперативной памяти и общую производительность в 3200 миллиардов операций в секунду. Человеку потребовалось бы 100000 лет, чтобы даже с калькулятором выполнить все те операции, которые этот компьютер делает всего за 1 секунду!
Создать подобную вычислительную систему - все равно, что построить целый завод со своими системами охлаждения, бесперебойного питания и т.д. Понятно, что любой суперкомпьютер, даже в более умеренной конфигурации, должен стоить не один миллион долларов США: ради интереса прикиньте, сколько стоят, скажем, лишь 600 Гбайт оперативной памяти? Возникает естественный вопрос: какие задачи настолько важны, что требуются компьютеры стоимостью в несколько миллионов долларов? Или еще один: какие задачи настолько сложны, что хорошего Pentium III для их решения недостаточно?
НУЖНЫ ЛИ НАМ СУПЕРКОМПЬЮТЕРЫ?
Оказывается, существует целый ряд жизненно важных проблем, которые просто невозможно решать без использования суперкомпьютерных технологий.
Возьмем, к примеру, США, по территории которых два раза в год проходят разрушительные торнадо. Они сметают на своем пути города, поднимают в воздух автомобили и автобусы, выводят реки из берегов, заливая тем самым гигантские территории. Борьба с торнадо - существенная часть американского бюджета. Только штат Флорида, который находится недалеко от тех мест, где эти смерчи рождаются, за последние годы потратил более 50 миллиардов долларов на экстренные меры по спасению людей. Правительство не жалеет денег на внедрение технологий, которые позволили бы предсказывать появление торнадо и определять, куда он направится.
Как рассчитать торнадо? Очевидно, что для этого надо решить задачу о локальном изменении погоды, то есть задачу о движении масс воздуха и распределении тепла в неком регионе. Принципиально это несложно, однако на практике возникают две проблемы. Проблема первая: чтобы заметить появление смерча, надо проводить расчет на характерных для его образования размерах, то есть на расстояниях порядка двух километров. Вторая трудность связана с правильным заданием начальных и граничных условий. Дело в том, что температура на границах интересующего вас региона зависит от того, что делается в соседних регионах. Рассуждая дальше, легко убедиться, что мы не можем решить задачу о смерче, не имея данных о климате на всей Земле. Климат на планете рассчитать можно, что и делается каждый день во всех странах для составления среднесрочных прогнозов погоды. Однако имеющиеся ресурсы позволяют вести расчеты лишь с очень большим шагом - десятки и сотни километров. Ясно, что к предсказанию смерчей такой прогноз не имеет никакого отношения.
Необходимо совместить две, казалось бы, плохо совместимые задачи: глобальный расчет, где шаг очень большой, и локальный, где шаг очень маленький. Сделать это можно, но лишь собрав в кулаке действительно фантастические вычислительные ресурсы. Дополнительная трудность состоит еще и в том, что вычисления не должны продолжаться более 4 часов, так как за 5 часов картина погоды смазывается совершенно, и все, что вы считаете, уже не имеет никакого отношения к реальности. Нужно не только обработать гигантский объем данных, но и сделать это достаточно быстро. Такое под силу лишь суперкомпьютерам.
Предсказание погоды - далеко не единственный пример использования суперкомпьютеров. Сегодня без них не обойтись в сейсморазведке, нефте- и газодобывающей промышленности, автомобилестроении, проектировании электронных устройств, фармакологии, синтезе новых материалов и многих других отраслях.
Так, по данным компании Ford, для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, со съемкой и последующей обработкой результатов, ей понадобилось бы от 10 до 150 прототипов для каждой новой модели. При этом общие затраты составили бы от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть.
Известной фирме DuPont суперкомпьютеры помогли синтезировать материал, заменяющий хлорофлюорокарбон. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы 50 тысяч долларов и около трех месяцев работы - и это без учета времени, необходимого на синтез и очистку требуемого количества вещества.
ПОЧЕМУ СУПЕРКОМПЬЮТЕРЫ СЧИТАЮТ ТАК БЫСТРО?
Итак, мы видим, что без суперкомпьютеров сегодня действительно не обойтись. Осталось прояснить еще один вопрос: почему они считают так быстро? Это может быть связано, во-первых, с развитием элементной базы и, во-вторых, с использованием новых решений в архитектуре компьютеров.
Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2·10-6 секунды), можно было выполнить 2n арифметических операций за 18n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1,8 наносекунды (1,8·10-9 секунды), а пиковая производительность - около 77 миллиардов арифметических операций в секунду.
Что же получается? За полвека производительность компьютеров выросла более чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1,8 наносекунды, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден - за счет использования новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.
Различают два способа параллельной обработки: собственно параллельную и конвейерную. Оба способа интуитивно абсолютно понятны, поэтому сделаем лишь небольшие пояснения.
Параллельная обработка
Предположим для простоты, что некое устройство выполняет одну операцию за один такт. В этом случае тысячу операций такое устройство выполнит за тысячу тактов. Если имеется пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести тактов. Аналогично система из N устройств ту же работу выполнит за 1000/N тактов. Подобные примеры можно найти и в жизни: если один солдат выкопает траншею за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справится с той же работой за 12 минут- принцип параллельности в действии!
Кстати, пионером в параллельной обработке потоков данных был академик А. А. Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу методом сеток, посадив несколько десятков барышень с арифмометрами за столы (узлы сетки). Барышни передавали данные одна другой просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была рассчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Так создали, можно сказать, первую параллельную систему. Хотя расчеты водородной бомбы провели мастерски, точность их оказалась очень низкой, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.
Конвейерная обработка
Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций, таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары слагаемых последовательно, одну за другой, до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.
Идея конвейерной обработки заключается в расчленении операции на отдельные этапы, или, как это принято называть, ступени конвейера. Каждая ступень, выполнив свою работу, передает результат следующей ступени, одновременно принимая новую порцию входных данных. Получается очевидный выигрыш в скорости обработки. В самом деле, предположим, что в операции сложения можно выделить пять микроопераций, каждая из которых выполняется за один такт работы компьютера. Если есть одно неделимое последовательное устройство сложения, то 100 пар аргументов оно обработает за 500 тактов. Если теперь каждую микрооперацию преобразовать в отдельную ступень конвейерного устройства, то на пятом такте на разной стадии обработки будут находиться первые пять пар аргументов, и далее конвейерное устройство будет выдавать результат очередного сложения каждый такт. Очевидно, что весь набор из ста пар слагаемых будет обработан за 104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).
Идеи параллельной обработки появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах. Все современные микропроцессоры, будь то Pentium III или РА-8600, Е2К или Power2 SuperChip, используют тот или иной вид параллельной обработки.
Для того чтобы лишний раз убедиться, что все новое - это хорошо забытое старое, достаточно лишь нескольких примеров. Уже в 1961 году создается компьютер IBM STRETCH, имеющий две принципиально важные особенности: опережающий просмотр вперед для выборки команд (при котором одновременно с текущей считываются команды, выполняемые позднее) и расслоение памяти на два банка - реализация параллелизма при работе с памятью. В 1963 году в Манчестерском университете разработан компьютер ATLAS, использующий конвейерный принцип выполнения команд. Выполнение команд разбито на четыре стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Это позволило уменьшить время выполнения команд в среднем с 6 до 1,6 микросекунды. В1969 году Control Data Corporation выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами.
СОВРЕМЕННЫЕ СУПЕРКОМПЬЮТЕРЫ
А что же сейчас используют в мире? По каким направлениям идет развитие высокопроизводительной вычислительной техники? Таких направлений четыре.
Векторно-конвейерные компьютеры
Две главные особенности таких машин: наличие конвейерных функциональных устройств и набора векторных команд. В отличие от обычных команд векторные оперируют целыми массивами независимых данных, то есть команда вида А=В+С может означать сложение двух массивов, а не двух чисел. Характерный представитель данного направления - семейство векторно-конвейерных компьютеров CRAY, куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте этого года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).
Массивно-параллельные компьютеры с распределенной памятью
Идея построения компьютеров этого класса тривиальна: серийные микропроцессоры соединяются с помощью сетевого оборудования - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить процессоры, а если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию. К этому же классу можно отнести и простые сети компьютеров, которые сегодня все чаще рассматриваются как дешевая альтернатива крайне дорогим суперкомпьютерам. (Правда, написать эффективную параллельную программу для таких сетей довольно сложно, а в некоторых случаях просто невозможно). К массивно-параллельным можно отнести компьютеры Intel Paragon, ASCI RED, IBM SP1, Parsytec, в какой-то степени IBM SP2 и CRAY T3D/T3E.
Параллельные компьютеры с общей памятью
Вся оперативная память в таких компьютерах разделяется несколькими одинаковыми процессорами, обращающимися к общей дисковой памяти. Проблем с обменом данными между процессорами и синхронизацией их работы практически не возникает. Вместе с тем главный недостаток такой архитектуры состоит в том, что по чисто техническим причинам число процессоров, имеющих доступ к общей памяти, нельзя сделать большим. В данное направление суперкомпьютеров входят многие современные SMP-компьютеры (Symmetric Multi Processing), например сервер НР9000 N-class или Sun Ultra Enterprise 5000.
Кластерные компьютеры
Этот класс суперкомпьютеров, строго говоря, нельзя назвать самостоятельным, скорее, он представляет собой комбинации предыдущих трех. Из нескольких процессоров, традиционных или векторно-конвейерных, и общей для них памяти формируется вычислительный узел. Если мощности одного узла недостаточно, создается кластер из нескольких узлов, объединенных высокоскоростными каналами. По такому принципу построены CRAY SV1, HP Exemplar, Sun StarFire, NEC SX-5, последние модели IBM SP2 и другие. В настоящее время именно это направление считается наиболее перспективным.
Два раза в год составляется список пятисот самых мощных вычислительных установок мира (его можно посмотреть в Интернете по адресу http://parallel.ru/top500.html). Согласно последней редакции списка top500, вышедшей в ноябре прошлого года, первое место занимает массивно-параллельный компьютер Intel ASCI Red. На второй позиции стоит компьютер ASCI Blue-Pacific от IBM, объединяющий 5808 процессоров PowerPC 604e/332MHz. Оба эти суперкомпьютера созданы в рамках американской национальной программы Advanced Strategic Computing Initiative, аббревиатура которой и присутствует в названии. Производительность компьютера, стоящего на последнем, 500-м, месте в списке самых мощных, составляет 33,4 миллиарда операций в секунду.
Если мощность существующих компьютеров поражает, то что говорить о планах. В декабре 1999 года корпорация IBM сообщила о новом исследовательском проекте общей стоимостью около 100 миллионов долларов, цель которого - построение суперкомпьютера, в 500 раз превосходящего по производительности самые мощные компьютеры сегодняшнего дня. Компьютер, имеющий условное название Blue Gene, будет иметь производительность порядка 1 PETAFLOPS (1015 операций в секунду) и использоваться для изучения свойств белковых молекул. Предполагается, что каждый отдельный процессор Blue Gene будет иметь производительность порядка 1 GFLOPS (109 операций в секунду). 32 подобных процессора будут помещены на одну микросхему. Компактная плата размером 2x2 фута будет вмещать 64 микросхемы, что по производительности не уступает упоминавшимся ранее суперкомпьютерам ASCI, занимающим площадь 8000 квадратных метров. Более того, 8 таких плат будут помещены в 6-футовую стойку, а вся система будет состоять из 64 стоек с суммарной производительностью 1 PFLOPS. Фантастика!
Вычислительный кластер Московского государственного университета им. М. В. Ломоносова - минимальная стоимость, суперкомпьютерная производительность. В настоящий момент это самая мощная вычислительная система, установленная в вузе России.
СУПЕРКОМПЬЮТЕРЫ В РОССИИ
Идеи построения собственных суперкомпьютерных систем существовали в России всегда. Еще в 1966 году М.А.Карцев выдвинул идею создания многомашинного вычислительного комплекса М-9 производительностью около миллиарда операций в секунду. В то время ни одна из машин мира не работала с такой скоростью. Однако, несмотря на положительную оценку министерства, комплекс М-9 промышленного освоения не получил.
Работы по созданию суперкомпьютерных систем и суперкомпьютерных центров ведутся в России и сейчас. Наиболее известна линия отечественных суперкомпьютеров МВС-1000, создаваемая в кооперации научно-исследовательских институтов Российской академии наук и промышленности. Супер-ЭВМ линии МВС-1000 - это мультипроцессорный массив, объединенный с внешней дисковой памятью, устройствами ввода/вывода информации и управляющим компьютером. Компьютеры МВС-1000 используют микропроцессоры Alpha 21164 (разработка фирмы DEC-Compaq) с производительностью до 1-2 миллиардов операций в секунду и оперативной памятью объемом 0,1-2 Гбайта.
Спектр научных и практических задач, решаемых на таком компьютере, может быть очень велик: расчет трехмерных нестационарных течений вязкосжимаемого газа, расчеты течений с локальными тепловыми неоднородностями в потоке, моделирование структурообразования и динамики молекулярных и биомолекулярных систем, решение задач линейных дифференциальных игр, расчет деформаций твердых тел с учетом процессов разрушения и многие другие. Одна из самых мощных систем линии МВС-1000, установленная в Межведомственном суперкомпьютерном центре, содержит 96 процессоров.
В последнее время в России, также как и во всем мире, активно используется кластерный подход к построению суперкомпьютеров. Покупаются стандартные компьютеры и рабочие станции, которые с помощью стандартных сетевых средств объединяются в параллельную вычислительную систему. По такому пути пошел, и, надо сказать, успешно, Научно-исследовательский вычислительный центр Московского государственного университета им. М.В.Ломоносова, создавший кластер из 12 двухпроцессорных серверов "Эксимер" на базе Intel Pentium III/500MHz (в сумме 24 процессора, более 3 Гбайт оперативной памяти, 66 Гбайт дисковой памяти). Сегодня это крупнейшая вычислительная установка в вузе России, предназначенная для поддержки фундаментальных научных исследований и образования. При минимальной стоимости вычислительный кластер НИВЦ МГУ показывает производительность 5,7 миллиарда операций в секунду при решении системы линейных алгебраических уравнений с плотной матрицей размером 16000x16000! В будущем планируется значительно увеличить мощность кластера как за счет добавления новых процессоров, так и за счет модернизации вычислительных узлов.
ВМЕСТО ЗАКЛЮЧЕНИЯ
К сожалению, чудеса в нашей жизни случаются редко. Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностью их использования. Да что там использование, иногда даже вопросы, возникающие вокруг суперкомпьютеров, ставят в тупик. Как вы думаете, верно ли утверждение: чем мощнее компьютер, тем быстрее на нем можно решить данную задачу? Ну, конечно же, нет... Простой бытовой пример. Если один землекоп выкопает яму за 1 час, то два землекопа справятся с задачей за 30 мин - в это еще можно поверить. А за сколько времени эту работу сделают 60 землекопов? Неужели за 1 минуту? Конечно же, нет! Начиная с некоторого момента они будут просто мешать друг другу, не ускоряя, а замедляя процесс. Так же и в компьютерах: если задача слишком мала, то мы будем дольше заниматься распределением работы, синхронизацией процессов, сборкой результатов и т. п., чем непосредственно полезной деятельностью.
Но все вопросы, сопровождающие суперкомпьютер, конечно же, решаются. Да, использовать суперкомпьютеры сложнее, чем персоналку: нужны дополнительные знания и технологии, высококвалифицированные специалисты, более сложная информационная инфраструктура. Написать эффективную параллельную программу намного сложнее, чем последовательную, да и вообще создание программного обеспечения для параллельных компьютеров - это центральная проблема суперкомпьютерных вычислений. Но без супер-ЭВМ сегодня не обойтись, и отрадно, что в нашей стране есть понимание необходимости развития этих технологий. Так, в ноябре прошлого года в Президиуме Российской академии наук состоялось открытие межведомственного суперкомпьютерного центра. В процессе становления суперкомпьютерные центры в Дубне, Черноголовке, Институте прикладной математики РАН им. М. В. Келдыша, Институте математического моделирования РАН, Московском государственном университете им. М. В. Ломоносова. Создана и развивается линия отечественных суперкомпьютеров МВС-1000. Активно разворачивает свою деятельность Информационно-аналитический центр по параллельным вычислениям в сети Интернет WWW.PARALLEL.RU, осуществляющий информационную поддержку многих российских проектов. А иначе и нельзя. Параллельные вычисления и параллельные компьютеры - это реальность, и это уже навсегда.
• ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ
ЗАКОН АМДАЛА
Представьте себе ситуацию: у вас есть программа и доступ, скажем, к 256-процессорному суперкомпьютеру. Вы, вероятно, ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре? А вот этого, скорее всего, и не произойдет.
Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, причем 0 ≤ f ≤ 1 (эта доля определяется не по числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f=1) программам. Так вот, для того, чтобы оценить, какое ускорение S можно получить на компьютере, состоящем из р процессоров, при данном значении f, воспользуемся законом Амдала:
S ≤ 1/{f+(1- f)/p}.
Если вдуматься как следует, то закон на самом деле страшный. Предположим, что в вашей программе лишь 10% последовательных операций, т.е. f=0,1. В этом случае закон утверждает: сколько бы процессоров вы ни использовали, ускорения работы программы более чем в десять раз никак не получите. Да и то десять - это теоретическая оценка сверху самого лучшего случая, когда никаких других отрицательных факторов нет...
Отсюда первый вывод - прежде, чем переходить на параллельный компьютер (а любой суперкомпьютер именно таков), надо оценить заложенный в программе алгоритм. Если доля последовательных операций в нем велика - на значительное ускорение рассчитывать явно не приходится.
В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы п чисел:
s = 0,
Do i = 1, n
s = s + а(i)
EndDo
Этот алгоритм строго последовательный, так как на i-той итерации цикла требуется результат (i-1)-вой, и все итерации выполняются одна за другой. В данном случае f=1, и, стало быть, никакого эффекта от использования параллельных компьютеров для выполнения этого алгоритма мы не получим. Вместе с тем выход очевиден. Поскольку в большинстве реальных случаев нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: а(1)+а(2), а(3)+а(4), а(5)+а(6) и т. д. Заметим, что при такой схеме все пары можно складывать одновременно. На следующих шагах будем действовать аналогично, получив вариант параллельного алгоритма.
Казалось бы, в данном случае все проблемы удалось разрешить. Но остается еще множество других трудностей, связанных с разной производительностью процессоров, скоростью передачи данных и т. д. Но это уже тонкости параллельного программирования, с азами которого вы в скором времени сможете познакомиться в интернетовском курсе по адресу
http://parallel.ru/vvv/.
РАСПРЕДЕЛЕНИЕ ПЯТИСОТ САМЫХ МОЩНЫХ КОМПЬЮТЕРОВ МИРА ПО СТРАНАМ, ГДЕ ОНИ РАСПОЛОЖЕНЫ, И ФИРМАМ-ПРОИЗВОДИТЕЛЯМ

США-Канада
Европа
Япония
Остальные
ВСЕГО

IBM
67
67
2
5
141

SGI/CRAY
92
27
12
2
133

SUN
76
29
4
4
113

Hewlett-Packard
33
10
2

45

Fujitsu
1
9
15
1
26

NEC
2
7
10
2
21

Hitachi

1
10

11

Остальные
6
2
2

10

ВСЕГО
277
152
57
14
500

https://www.nkj.ru/archive/articles/7365/

наука, history, история, it, технологии

Previous post Next post
Up