Когда Уайтхед (Whitehead) и Рассел (Russell) работали над основаниями математики, они столкнулись с бесконечными парадоксами и противоречиями в себе, которые, конечно, сделали бы математику невозможной. Приложив множество усилий, они обнаружили, что у этих всех парадоксов был один общий источник, грубо говоря - выражения, которые содержали слово «все», и решение было найдено во введении «невсеобщности», семантического предшественника неотождествления. Рассмотрим для примера «утверждение обо всех утверждениях». Они обнаружили, что подобные обобщения, или «общие» утверждения, были незаконными, поскольку они с самого начала противоречили самим себе. Невозможно законным образом сделать утверждение обо «всех» утверждениях без какого-либо ограничения, поскольку оно бы включило в себя и это новое только что сделанное утверждение. Если рассмотреть многопорядковый термин, такой как «утверждение», а таковые мы можем производить безо всякого ограничения, и вспомнить о том, что любое утверждение об утверждениях принимает форму утверждения, то, очевидно, мы не можем делать утверждения обо всех утверждениях. В подобных случаях это утверждение должно быть ограничено; у такого набора нет общей суммы, и утверждение обо «всех его членах» нельзя сделать законным образом. Подобным же образом, мы не можем говорить обо всех числах.
Утверждения типа «утверждения обо всех утверждениях» были названы Расселом «незаконными обобщениями». В подобных случаях необходимо подразделить данный набор на более мелкие наборы, каждый из которых может быть обобщен. В общих чертах это и есть суть формулировки цели теории типов. На языке Principia Mathematica тот принцип, который дает нам возможность избежать незаконных обобщений, можно выразить следующим образом: «То, что касается всего множества, не должно являться одним из этого множества», или «Если, при условии, что у определенного множества есть общая сумма, в нем найдутся члены, определимые только в терминах этой общей суммы, то у рассматриваемого множества нет никакой общей суммы».
Вышеуказанный принцип называется «принципом порочного круга», поскольку он позволяет нам избавиться от порочных кругов, которые порождаются введением незаконных обобщений. Рассел называет споры, которые связаны с принципом порочного круга», «заблуждениями порочного круга». В качестве примера Рассел дает двузначный закон «исключенного третьего», сформулированный в виде «все утверждения являются либо истинными, либо ложными». Мы впадаем в заблуждение порочного круга, если начинаем утверждать, что закон исключенного третьего принимает форму утверждения, и, следовательно, может оцениваться как истинный или ложный.
Прежде чем мы сможем сделать какое-либо утверждение обо «всех утверждениях» законным, нам нужно ограничить его некоторым образом, так, чтобы утверждение об этом множестве не входило в само это множество. Другим примером заблуждения порочного круга может послужить некий воображаемый скептик, который заявляет, что он ничего не знает, и в ответ получает опровергающий вопрос - а знает ли он, что он ничего не знает? Прежде чем заявление этого скептика станет значимым, он должен неким образом ограничить количество фактов, в отношении которых он проявляет свое «невежество», иначе он сделает незаконное обобщение. Когда же такое ограничение наложено, и он заявляет, что он невежественен в отношении экстенсиональной последовательности утверждений, и его утверждение о собственном невежестве не является членом этой последовательности, то подобный скептицизм опровергнуть подобным образом невозможно. У нас нет надобности погружаться в дальнейшие подробности сложной и трудной теории типов. В моей Ā психофизиологической формулировке эта теория становится структурно крайне простой и естественной, и она применима как к математике, так и к большому количеству повседневных переживаний, устраняя невероятно большое число непониманий, порочных кругов и прочих семантических источников человеческих несогласий и несчастий.
Альфред Коржибский, «Наука и психическое здоровье»,
( Книга II, Глава XXVII )