Модельная категория Строма

Dec 19, 2008 23:31

На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х ( Read more... )

math

Leave a comment

siyuv January 6 2009, 14:59:46 UTC
...с какой стати к этому учению прислушиваться тем, кого этому не учили? -- у Вас кажется сложилось впечатление, что я критикую абстрактную математику. Это было бы странно, учитывая мою специализацию. Я всего лишь высказал мысль, что предметом изучения гомотопической топологии являются пространства с точностью до слабых эквивалентностей. Различные абстрактные понятия для этого весьма полезны. Более того, они часто представляют интерес сами по себе, но вряд ли можно говорить, что они подменяют собой основной предмет, поскольку не вся наука переключается на их изучение (например эквивариантная топология). Бывает и так, что какая-то абстракция срастается с абстракциями из других областей математики и тогда можно говорить о новой науке (например К-теория). Стабильная гомотопическая теория пока где-то по середине.

Я не уверен, что у него было это понятие -- понятия групп (ко)гомологий у него тоже не было. Это не помешало ему доказать теорему двойственности. Александров, Хопф, Понтрягин - тоже -- Ну а что же они изучали? Другого предмета для изучения у них вроде бы не было. Конечно они понимали бесперспективность изучения всех гомотопических типов и всячески себя ограничивали (многообразиями, трианглированными пространствами, и т.д.). Это и привело в конце концов к революции Вайтхеда-Серра.

Изучают интересные вопросы про пространства, обычно довольно простые -- Разумеется, каждая конкретная работа изучает какой-то интересный вопрос, но про целую область математики так говорить, мне кажется, неправомерно. Ну а кончатся интересные вопросы, это означает конец области? Мне кажется нет. Предметом изучения должно быть что-то недостижимое (решение всех диафантовых уравнений или классификация всех гомотопических типов). Если предмет изучения себя не исчерпал, то со временем могут появиться новые подходы, новые идеи. Адамс 66-м году сказал на конгрессе в Москве, что гомотопическая топология выполнила поставленные перед ней задачи (мне не удалось найти ссылку, цитирую с чужих слов). На тот момент кончились интересные вопросы. И это при том, что Адамс считал, что топология должна заниматься пространствами, а симплициальные множества через чур абстрактны. Прошло 40 лет уже, а область жива. Появились новые идеи, новые применения...

Спор у нас довольно беспредметный -- он возник из того, что Вы меня упрекнули в чрезмерной узости взглядов. Я всего лишь пытаюсь оправдаться.

...наверное, не стоит убеждать меня в том, что интересная мне тема неинтересна -- вот уж и в мыслях не было, тем более, что Вы не рассказываете чем Вы занимаетесь.

Гуревич не относится к числу тех, кто не смог выучить спектральные последовательности -- я этого не утверждал.

Reply

sowa January 7 2009, 00:30:40 UTC
" Я всего лишь высказал мысль, что предметом изучения гомотопической топологии являются пространства с точностью до слабых эквивалентностей."

Я утверждаю, что этого никогда не было. Я не знаю ни одной нетехнической (не вспомогательной) значительной работы о "пространства с точностью до слабых эквивалентностей". Может, у Вас есть пример?

"Ну а что же они изучали?"

Вряд здесь есть место для очерка по истории топологии. Возьмите книгу Дьедонне на эту тему, например.

Меня удивляет, что Вы постоянно объединяете Уайтхеда (причем я так и не понял, которого) с Серром.

" Ну а кончатся интересные вопросы, это означает конец области?"

Да, конечно. Это совсем не оригинальная точка зрения.

Адамс сказал, что "most of the basic (теории гомoтопий) principles are known". Далее он говорит о том, что "when you contemplate some of the tabulated data, orderly patterns are hard to find". Действительно, топологи почти не способны находить закономерности в числовых данных - в противоположность теоретико-числовикам, например. Может, их там и нет, а может, они не видят - не знаю.

К словам Адамса в 1966-м надо относиться с большой осторожностью. В 1965-м он перенес "the first attack of a psychiatric illness, as a result of which he was on sick leave for some months." Уровень его работ никогда больше не вернулся к тому, что был до болезни. Будучи бесспорным лидером теории гомотопий на тот момент, он мог принять отсутствие идей у себя за их отсутствие вообще.

"Разумеется классический этап не мог закончиться сразу, в конце-концов оставались люди, которые не смогли/не захотели выучить спектральные последовательности, и не все они подались в дифуры, как Понтрягин. Наверное именно к этому течению следует отнести работу Гуревича..."

Трудно понять эту фразу иначе, как то, что Гуревич относится к тем, кто не смог или не захотел изучить спектральные последовательности.

""Спор у нас довольно беспредметный" -- он возник из того, что Вы меня упрекнули в чрезмерной узости взглядов. Я всего лишь пытаюсь оправдаться."

Увы, не получается.

Reply

siyuv January 7 2009, 13:30:00 UTC
Может, у Вас есть пример? -- да в общем-то любая работа по гомотопической топологии. Возьмите хотя бы инвариант Хопфа = 1. В гомотопической категории рассматриваются отображения из S^{2n-1} в S^n. Им ставятся в соответствие числа (инвариант Хопфа). Спрашивается: для каких n инвариант Хопфа может быть равен 1. Ответ: 2, 4 и 8.

Возьмите книгу Дьедонне на эту тему, например -- я Вас попросил сформулировать что является предметом изучения некой области, а Вы мне в ответ предлагаете почитать про историю ее развития. Это конечно интересно, но не тоже самое. Я просто не могу уловить в чем наше расхождение. Хотя похоже оно весьма фундаментально.

Меня удивляет, что Вы постоянно объединяете Уайтхеда (причем я так и не понял, которого) с Серром. -- Сначала я этого Уайтхеда назвал старшим -- Вы возразили, потом я назвал его старым -- Вы промолчали. Я перестал его как-то определять, решив что Вы уже поняли о ком идет речь. Я их не объединяю, а обозначаю переходный этап в развитии топологии. Их работы появились на рубеже 49-50 годов и обозначили революцию в области. Уайтхед ввел новый предмет изучения, а Серр убедительно показал, что этот предмет гораздо более интересный, чем тот что рассматривался до этого.

Это совсем не оригинальная точка зрения -- я догадываюсь, но на мой взгляд она часто бывает ошибочной. Вот история про Атиа, рассказанная как-то на лекции МакФерсоном: в какой-то момент Атиа всем говорил, что теория узлов это пройденный этап, изучать там больше нечего. Но через 10 лет, когда нашлись применения в физике, появились новые идеи тот же Атиа стал всем говорить что нужно заниматься теорией узлов. Когда его спросили: как же так, ведь 10 лет назад Вы говорили ровно противоположное. Он нашелся что ответить: "Я был прав тогда, прав и сейчас."

Примерно то же произошло/происходит с гомотопической теорией.

most of the basic (теории гомoтопий) principles are known -- А откуда вы цитируете, можно ссылку, пожалуйста? Я думал, что это его речь на конгрессе. Он это где-то написал?

К словам Адамса в 1966-м надо относиться с большой осторожностью -- про его болезнь я не знал. Будучи неправым по срокам (он не предвидел блестящих работ Квиллена, Сулливана, Сигала в начале 70х), Адамс оказался прав глобально. Это не секрет, что с середины 70х до середины 80х вся область находилась в упадке. Работ филдсовского уровня не было; статьи в Annals если и появлялись, то как правило решали задачи поставленные в начале 70х методами разработанными в начале 70х (нестабильный аналог спектральной последовательности Адамса).

Но предмет изучения гомотопической тополигии никуда не исчез (также как и теории узлов) и продолжал вызывать интерес. В конце 80х начался подъем и сегодня у нас практически ренессанс. Новые идеи, новые приложения... Появились новые интересные задачи.

Опять зашкалил за длину комента...

Reply

sowa January 8 2009, 01:19:13 UTC
Проблема инварианта Хопфа - это не проблема о пространствах с точностью до слабых гомотопических эквивалентностей. Это проблема об отображниях сфер в сферы. Очень странно, что Вы привели ее в качестве примера, поскольку она в точно такой же степени является или не является проблемой о пространствах с точностью до сильной гомотопической эквивалентности.

Вы спросили, "Ну а что же они изучали?" На этот вопрос в двух словах не ответишь, и я отослал Вас к книге, в которой это подробно рассказано. Расхождение действительно фундаментально - Вы полагаете, что ответ на вопрос о том, чем занимается наука, можно дать на школьном уровне ("геометрия изучает плоские и пространственные фигуры"), я полагаю, что ответ можно дать только познакомившись с тем, чем реально занимались и занимаются в данной области.

Дж. Г. К. Уайтхед (видимо, речь идет о нем) не ввел никакого нового предмета изучения. Он ввел техническое средство, CW-комплексы. Серр ничего про этот "предмет" не доказал - он даже не цитирует ни одной работы Уайтхеда в своей диссертации.

Атийя действительно был прав оба раза. То, что два совершенно разных, почти не пересекающихся предмета можно назвать "теорией узлов", ничего не доказывает. Никаких приложений у классической теории узлов к физике нет. Стоит ли ей заниматься - спорный вопрос; некоторые всегда считали, что стоит, некоторые - что нет. Новый предмет, возникший в конце 80-х, является на самом деле не теорией узлов, а теорией специфических инвариантов узлов. Перспектива другая, задачи другие - это другой раздел математики.

"Примерно то же произошло/происходит с гомотопической теорией."

Возможно, теорией гомотопий просто стал называться другой предмет. Пока я не вижу, чем он интересен.

Я цитирoвал доклад Адамса на Конгрессе в Москве, а про болезнь - некролог в Bull. London Math. Soc.

" В конце 80х начался подъем и сегодня у нас практически ренессанс. Новые идеи, новые приложения... Появились новые интересные задачи."

Мне, как человеку постороннему, этого не видно. В тоже время мне видны многие достижения в областях, далеких от моих собственных интересов. Все, что Вы здесь упоминали - это, на мой взгляд, внутренние технические достижения. Специалистам, они, возможно, кажутся подъемом, но я отношусь к таким заявлениям скептически, повидав на своей жизни десятки предисловий, начинавшихся слова "Исследования в области Х переживают небывалый расцвет". Так что burden of proof снова на Вас: что за приложения, что за задачи?

Reply

siyuv January 8 2009, 03:00:09 UTC
Это проблема об отображниях сфер в сферы -- с точностью до гомотопии, заметьте, т.е. проблема формулируется в гомотопической категории.

...она в точно такой же степени является или не является проблемой о пространствах с точностью до сильной гомотопической эквивалентности -- конечно, это содержание теоремы того самого Уайтхеда. Различие достаточно тонкое и проявляется в технических вопросах, которые Вы вряд ли признаете интересными. Тем не менее задачи гомотопической топологии формулируются именно в гомотопической категории, а в какой из двух -- иногда это не важно, иногда критично.

Расхождение действительно фундаментально -- ответил ниже по ветке.

Он ввел техническое средство, CW-комплексы -- несколько больше: он ввел относительные CW-комплексы, которые вместе с ретрактами заменили классические расслоения (по Борсуку). Новый предмет изучения он тоже ввел -- это пространства с точностью до слабых эквивалентностей. CW-комплексы ему были нужны, чтобы показать, что новый предмет изучения совпадает со старым для хороших пространств.

Серр ввел почти одновременно с Уайтхедом новое понятие расслоения и создал на их основе новые вычислительные средства. Формально CW-комплексы для этого не нужны, и я вполне допускаю, что по началу он не видел связи. Но эти две работы обозначили появление новой framework в которой следует изучать гомотопическую топологию. Позднее она стала называться стандартной модельной категорией. И появление этих двух работ с разницей в год весьма символично.

То, что два совершенно разных, почти не пересекающихся предмета можно назвать "теорией узлов", ничего не доказывает -- предмет изучения у них один (узлы с точностью до изотопии). Да и трудно мне представить специалиста по инвариантам Васильева, никогда не слышавшего, скажем, про мю-инварианты Милнора.

...является на самом деле не теорией узлов, а теорией специфических инвариантов узлов -- то что вопрос о распознавании узлов при помощи инвариантов конечного типа считается важной открытой проблемой прямо подтверждает мою точку зрения.

Возможно, теорией гомотопий просто стал называться другой предмет -- Вы пытаетесь сыграть в туже игру, как с теорией узлов. Я этого не принимаю. Предмет остался тем же и продолжает изучать гомотопическую категорию пространств. Появились новые методы, новые приложения, но менять название причин нет.

Мне, как человеку постороннему, этого не видно -- посторонний человек может это оценить по появлениям статей в ведущих журналах, по назначениям специалистов в ведущие университеты. Вникать не обязательно, косвенных свидетельств достаточно.

Так что burden of proof снова на Вас: что за приложения, что за задачи? -- У меня не достаточно авторитета, чтобы высказываться за всю область, поэтому публично я этого делать не стану.

Reply

sowa January 8 2009, 04:03:06 UTC
Какая разница, какие гомотопические эквивалентности рассматриваются? Речь идет о сферах, самых обыкновенных, круглых. Отображения можно рассматривать только гладкие, или даже вещественно-аналитические. При чем тут слабые и сильные эквивалентности?

А работу Уайтхеда Вы смотрели?

"И появление этих двух работ с разницей в год весьма символично."

Ну и аргумент!

Далее у Вас получается порочный круг - Вы обосновываете свою точку зрения, заранее принимая ее. Если раздел математики определяется "предметом изучения" в Вашем смысле, то он им, разумеется, определяется. Содержания в такой аргументации - ноль.

"У меня не достаточно авторитета, чтобы высказываться за всю область, поэтому публично я этого делать не стану."

А вот это меня, честно, потрясло. Я ожидал, что Вы расскажете про интересные результаты, интересные задачи. А Вы говорите про какой-то авторитет. Выходит, Вы просто не знаете никаких интересных результатов и задач. Из чего мне придется заключить, что их действительно нет, а есть внутреннее развитие теории, интересное только специалистам. Не даром Вы все время говорите по то, что разные области математики расходятся.

Reply

siyuv January 8 2009, 17:11:04 UTC
Какая разница, какие гомотопические эквивалентности рассматриваются? -- в данном случае никакой.

Речь идет о сферах, самых обыкновенных, круглых. Отображения можно рассматривать только гладкие, или даже вещественно-аналитические. -- речь идет о классах отображений с точностью до гомотопии. Сферы могут быть любые -- хоть квадратные, хоть с рожками. Отображения тоже. Важен только их класс эквивалентности.

При чем тут слабые и сильные эквивалентности? -- простите, я забыл что Вы можете этого не знать. Квиллен доказал, что гомотопическая категория является локализацией (в смысле Габриеля-Зисмана) категогрии пространств по классу эквивалентностей. Так что от выбора эквивалентностей зависят множества гомотопических классов отображений между пространствами.

А работу Уайтхеда Вы смотрели? -- нет, а зачем? Она пересказана десятки раз.

Ну и аргумент! -- хороший аргумент. Он говорит о том, что революция в области на тот момент назрела. А вы как думаете?

Вы обосновываете свою точку зрения, заранее принимая ее -- обоснований для своей точки зрения по-поводу того, что является предметом гомотопической топологии, я привел более чем достаточно. Если Вам вдруг не хватило, то взгляните на первый пункт программы курса гомотопической топологии в НМУ.

Конечно можно сказать про любую область, что ее предмет это то чем она занимается. Но это масло масленое. Предмет это не то чем область занимается, а то что ее ограничивает. Как только выходит за рамки предмета, это уже приложение. Следуя же Вашей логике, все приложения следует включать непосредственно в предмет, а это очевидно не так.

В последнем комменте я пытался не обосновать этот нехитрый тезис, а объяснить каким образом Уайтхед ввел новый предмет изучения и какова связь с работой Серра.

А вот это меня, честно, потрясло -- неужели Вы не понимаете, что требуете от меня выставления оценок людям, которые сами регулярно ставят мне оценки и будут продолжать этим заниматься еще много лет по запросам различных Search/Promotion Committees. Ну ладно, если Вас так уж интересует мое мнение, то я попробую его изложить завтра, но только в самых общих чертах и только в моей узкой области.

Не даром Вы все время говорите по то, что разные области математики расходятся -- а вот это уже передергивание. Я сказал это единственный раз о двух конкретных областях (точнее даже под-областях) и выразил свое неудовольствие продолжающим углубляться разрывом.

Reply

sowa January 9 2009, 00:50:20 UTC
Мало ли чего Квиллен доказал спустя 35 лет после Хопфа. Проблема инварината Хопфа была поставлена как задача об отображениях сфер в сферы. Да и решена она была до работы Квиллена. Вы бы еще сказали, что Ньютон решал задачи про интеграл Лебега.

""А работу Уайтхеда Вы смотрели?" -- нет, а зачем? Она пересказана десятки раз."

Ну вот видите! Вы мне излагаете какие-то недавние представления, сложившиеся у весьма узкой группы людей. А я смотрел все упомянутые в этой дискуссии работы. Вы даете ссылку - я нахожу работу, скачиваю, смотрю, что там написано. И Серра, и Уайтхеда.

Аргумент никудышный. Работы Серра и Уайтхеда принадлежат различным традициям, и никакой революции вместе не образуют. Работа Серра действительно революционна, а работа Уайтхеда разрабатывает технические средства.

Что касается пунктов программы, то я Вам уже ответил на это поводу Постникова - в начале приходится давать такие "псевдо-объяснения", поскольку у студентов еще нет знаний, чтобы понять настоящие.

"Предмет это не то чем область занимается, а то что ее ограничивает."

Области не надо ограничивать. Они это плохо переносят. Ограниченная область - кандидат на мертвую науку.

Никаких оценок я от Вас не требую. Первый раз в жизни встречаю человека, который отказывается рассказать, что в его науке интересного.

Reply

siyuv January 14 2009, 12:48:58 UTC
Мало ли чего Квиллен доказал спустя 35 лет после Хопфа -- да нет, он это только обобщил и красиво записал. Я уверен, что и раньше было понятно, что слабые эквивалентности определяют гомотопическую категорию.

Вы бы еще сказали, что Ньютон решал задачи про интеграл Лебега -- не скажу, поскольку Ньютон не пользовался теорией меры, но если вы скажете, что Адамс не пользовался CW-комплексами, слабыми эквивалентностями и расслоениями Серра, то он наверное в гробу перевернется.

...сложившиеся у весьма узкой группы людей -- но ведь людей размышлявших именно над этими вопросами.

я смотрел все упомянутые в этой дискуссии работы -- видите ли, чтобы оценить значение той или иной работы необходимо посмотреть на нее в перспективе. Беглый просмотр ничего не дает. Я не скачивал те работы, про содержание которых я знаю из книг. Более того, книги передают содержание работы уже переосмыслив его, иногда не по первому разу и рассказывают о его значении, а это, согласитесь, гораздо более ценная информация, нежели просто содержание работы.

...никакой революции вместе не образуют -- мне казалось, что для того чтобы понять связь между этими работами достаточно понимать стандартную модельную категорию для пространств, а Вы вроде бы понимаете. Но оставим модельные категории. Возьмите любой современный учебник по алгебраической топологии. Хотя бы тот же Фоменко-Фукс. В нем рассказывается и про корасслоения Борсука, и про расслоения Гуревича, но со временем выясняется, что первые были нужны только для того, чтобы показать, что относительные CW-комплексы являются парами Борсука, а вторые нужны только для того, чтобы пояснить почему расслоения Серра вообще называются расслоениями. После этого остаются только CW-комплексы и расслоения Серра. Очевидно, что это не случайность.

Работа Серра действительно революционна, а работа Уайтхеда разрабатывает технические средства -- но работу Уайтхеда никак нельзя назвать недооцененной. Она была опубликована в хорошем журнале и вошла во все книжки по алгебраической топологии. Она в высшей степени концептуальна (говорю это не потому, что читал работу, а потому, что знаю какие концепции там представлены). О ее техничности судить не берусь, поскольку не читал, а в пересказе технику наверняка причесали.

Что касается пунктов программы, то я Вам уже ответил на это поводу Постникова -- по-поводу Постникова Вы сослались на тяжелую задачу написания предисловия, хотя Постников писал не предисловие, а ознакомительную статью, целью которой ставилось объяснить чем занимаются различные разделы топологии. Но допустим он прибег к такому приему вынуждено. Этого никак нельзя сказать про лектора, который выносит отдельным пунктом программы "Предмет гомотопической топологии". Приходиться предположить, что то о чем он там собирается рассказывать, он и в самом деле считает предметом этой науки.

Области не надо ограничивать -- однако очевидно, что на практике это делается, хотя бы для того, чтобы отличать одну область от другой.

Ограниченная область - кандидат на мертвую науку -- вот это меня удивило. Вообще-то всему когда-нибудь приходит конец. Все живущие кандидаты в покойники. Математические дисциплины не исключение. Если предмет себя исчерпал, то разумеется область умирает.

Первый раз в жизни встречаю человека, который отказывается рассказать, что в его науке интересного. -- Вы правы, я устыдился и исправился, вынеся рассказ о модельных категориях отдельным постом, т.к. здесь уже становится тяжело ориентироваться.

Reply

sowa January 15 2009, 07:41:09 UTC
Тут снова проявляются почти диаметрально противоположные представления о математике. Начиная с оценки работы Квиллена. Самое яркое место:

"видите ли, чтобы оценить значение той или иной работы необходимо посмотреть на нее в перспективе. Беглый просмотр ничего не дает. Я не скачивал те работы, про содержание которых я знаю из книг. Более того, книги передают содержание работы уже переосмыслив его, иногда не по первому разу и рассказывают о его значении, а это, согласитесь, гораздо более ценная информация, нежели просто содержание работы."

Видите ли, из книг Вы не узнаете содержания ни одной работы. В частности, Вы не увидите перспективы. В книгах есть нечто, названное CW-комплексами, есть теорема Уайтхеда, и т.п. Все это в пережеванном виде, с выброшенными вопросами, ради которых все это было придумано, с выборшенным vision автора, и так далее. Разумеется, начинать изучать предмет надо с книг. Но вот из книг у Вас сложилась неправильная картина - Вам казалось, что расслоения Гуревича были до расслоений Серра, а они появились позже. На уровне книг у меня обо всем этом есть представление. А статьи я смотрел, что уточнить исторические детали.

Разумеется, работу Уайтхеда нельзя назвать недооцененной. Разве я говорил что-нибудь подобное?

Я не знаю, откуда Вы цитировали Постникова, но цитированное "объяснение" имеется в его учебнике, основанном на его лекциях в МГУ, которые он читал не один раз. Он мог вставить его и какую-нибудь статью - это все равно идет от преподавания. Тем более у того лектора. Скорее всего он заимствовал это у Постникова, но даже если он это независимо придумал - перед ним стояла ровно та же задача, о которой я говорил: дать общее представление о предмете тем, кто еще не готов к пониманию его подлинной мотивировки.

Reply

siyuv January 23 2009, 06:29:46 UTC
Все это в пережеванном виде, с выброшенными вопросами, ради которых все это было придумано, с выборшенным vision автора -- у нас действительно очень разный взгляд на математику. Именно из-за того, что автор оригинальной работы полу-вековой давности интересуется вопросами, которые как правило потеряли актуальность я и не люблю смотреть в старые статьи, если есть достойная альтернатива. Когда Вам нужно освоить что-то новое Вы тоже предпочитаете обращаться к первоисточнику? Что-то мне подсказывает, что нет. По-крайней мере статьи Кана Вы не очень-то спешите читать.

Вам казалось, что расслоения Гуревича были до расслоений Серра, а они появились позже -- да, гладкость изложения в Фоменке-Фуксе обманчива в этом месте. Но я не думаю, что обманулся на каком-то концептуальном уровне.

А статьи я смотрел, что уточнить исторические детали -- конечно, только с точки зрения истории мматематики это и интересно, но когда я говорю о революции в предмете последовавшей за той или иной работой, или о связи двух казалось бы не связанных работ, то проверить мои утверждения, заглянув в оригинальные статьи нельзя. Там про это ничего нет. Нужно поинтересоваться более поздними интерпретациями.

...работу Уайтхеда нельзя назвать недооцененной. Разве я говорил что-нибудь подобное? -- Вы сказали, что она разрабатывает технические средства, по сравнению с революционной работой Серра. Это выглядит как не слишком высокая оценка. И на мой взгляд не заслуженная. Техника представленная у Вайтхеда уступает два порядка технике Серра, но при этом ему удалось заложить новые основания области, перенаправить исследования в новое русло.

...перед ним стояла ровно та же задача, о которой я говорил: дать общее представление о предмете тем, кто еще не готов к пониманию его подлинной мотивировки -- спор о таком фундаментальном понятии как предмет той или иной области наверняка должен был привлечь философов науки. Не знаете ли Вы каких-нибудь филосовских трудов, способных его разрешить?

Reply

sowa January 23 2009, 07:15:50 UTC
"Когда Вам нужно освоить что-то новое Вы тоже предпочитаете обращаться к первоисточнику?"

Да, обычно. Бывает, что оригинальные работы написаны очень плохо, тогда приходится обращаться к переизложениям - если они есть. Никаких поводов читать Кана у меня нет - это не моя специальность, и мне кажется, что он не очень-то хорошо писал.

"...проверить мои утверждения, заглянув в оригинальные статьи нельзя."

Можно, особенно если оказывается, что оригинальные статьи оказываются не о том, о чем Вы думали.

"....ему удалось ... перенаправить исследования в новое русло.

Да ну? В новое русло исследования направила диссертация Серра, а работа Уайтхеда - это technical framework для записи - даже не результатов, а доказательств.

Не думаю, что стоит искать философские глубины во вводных лекциях. Философских трудов на эту тему не знаю. Почти все, что философы пишут о математике - полная чушь.

Reply

sowa January 8 2009, 04:11:20 UTC
"-- ответил ниже по ветке."

Где?

Reply

siyuv January 8 2009, 16:00:18 UTC
siyuv January 7 2009, 13:30:17 UTC
Трудно понять эту фразу иначе, как то, что Гуревич относится к тем, кто не смог или не захотел изучить спектральные последовательности -- речь шла про конкретную работу Гуревича. Саму работу я не читал, но вот Спаниер пишет в реферате:

...A fiber space is regular if and only if it satisfies the covering homotopy condition with the covering homotopy constant when the base homotopy is constant. It is shown that every fiber space over a metric $B$ is regular.

The triple $(E,B,p)$ is called a local fiber space if for every $b\in B$ there exists a neighborhood $U$ of $b$ such that the triple ($p^{-1}(U)$, $U$, $p|p^{-1}(U)$) is a fiber space. The main theorem asserts that a (regular) local fiber space over a paracompact space $B$ is a (regular) fiber space in the large. It follows from this that a local fiber space satisfies the covering homotopy condition for maps of paracompact spaces...

Очевидно, что автора очень интересуют тонкости связанные с теоретико-множественной топологией, поэтому конкретно эту работу следует отнести именно к "классическим". У меня не было цели как либо принизить заслуги Гуревича, тем более, что именно он ввел понятие гомотопических групп, которое и легло в основу определения слабых эквивалентностей.

Увы, не получается. -- ну тогда я, пожалуй, прекращу оправдываться, смешно это как-то. Да и не сам я дошел до этой нехитрой мысли. Вот и Постников меня поддерживает (сделайте поиск по странице на фразу "предмет так называемой гомотопической топологии"), а уж его-то вряд ли можно упрекнуть в узости взглядов (Новиков где-то писал, что именно он положил начало на мех-мате занятиям по новой датировке истории).

Reply

sowa January 8 2009, 00:38:17 UTC
Работа Гуревича доступна онлайн, ничего не стоит ее посмотреть. Равно как ничего не стоит посмотреть список работ Гуревича, и убедиться в том, что у него есть несколько работ о спектральных последовательностях.

Постников Вас не поддерживает. Это обычный и почти неизбежный педагогический прием. Студент или читатель поначалу редко готов к объяснению подлинной мотивации предмета, и ему говорят некую полуправду, вроде того, что топология изучает топологические пространства, поскольку у него еще нет кругозора для понимания содержательных объяснений. А когда этот кругозор появляется, то объяснения обычно уже не нужны. В результате они попадают разве что в обзоры и исторические книги.

Неужели Вы не читали довольно язвительные замечания П. Фрейда по поводу подобных объяснений? В частности, согласно Фрейду, категории не являются предметом теории категорий.

Reply


Leave a comment

Up