На категории топологических пространств давно были построены две модельные категории: стандартная (принадлежащая Квиллену) и модельная категория Арне Строма, которая появилась в начале 70-х
( Read more... )
Вы дважды упомянули слово "финансирование" -- я имел в виду, что приложения необходимы любой области, чтобы убедить коллег в своей полезности, иначе ни то что грантов, рабочих мест не увидать последователям. По-поводу гос-финансирования я склонен с Вами согласиться (перечитал дискуссию годичной давности у Вас в журнале), но ведь институт Клэя и AIM вроде бы частные инициативы (сюда же наверное следует отнести институт Миттага-Леффлера, хотя сегодня он и поддерживается государством), так что не все потеряно.
Как оно все устроено на самом деле? -- Кроме симплициальных комплексов топологи рассматривали также кубические (Серр их использовал для вывода спектральной последовательности расслоения). Потом необходимость в них в основном отпала и их почти прекратили изучать (кроме Бангорской школы). Зато симплициальные комплексы переросли в симплициальные множества и развились в полноценную гомотопическую теорию. Оставался вопрос, а можно ли то же самое повторить для кубических множеств или каких-нибудь других, или же симплексы (категория конечных ординалов) какие-то особенные? Гротендик предложил рассматривать тестовые категории, характеризующиеся двумя свойствами: во-первых они должны быть стягиваемыми, а второе свойство более техническое, но наверняка имеет явный геометрический смысл, просто я что-то не соображу сейчас; вот лекция Жардина на эту тему. Так вот, первая гипотеза заключалась в том, что предпучки на тестовых категориях должны оснащаться модельной структурой эквивалентной пространствам. Эта гипотеза (и несколько других) была недавно (2003) доказана Сизинским (франц.; имеется так же пересказ Жардина по английски, который, кстати, за год до доктората Сизинского независимо построил модельную категорию для кубических множеств, но решил не публиковать когда увидел общее решение), а вся эта область получила название "гомотопической теории Гротендика" и активно развивается в основном, к сожалению, усилиями французской школы.
На сегодняшний день мне известно только одно утверждение, которое указывает на то, что симплексы чем-то лучше кубов или чего бы то ни было еще. Это лемма Мура говорящая что симплициальные группы автоматически фибрантны как симплициальные множества. Я спрашивал и у Жардина и у Сизинского, они не знают выполняется ли это свойство в других категориях. Хорошая тема для мастерской диссертации.
Зашкалил за лимит ЖЖ для длинны комментов, продолжение следует.
Клэй - в основном a public relation stunt. Это способ поддерживать не математику, а репутацию Клэя. Пожалуй, на данный момент его деятельность вреднее госфинансирования. AIM будет потише. Но их манера организовывать конференции...
Спасибо за ссылки. Все это очень интересно, но мне осталось непонятным, почему это отвечает на вопрос "Как оно все устроено на самом деле?".
Симплексы, на мой взгляд, хороши тем, что возникают естественно.
...почему это отвечает на вопрос "Как оно все устроено на самом деле?" -- потому, что показывает что симплексы ни чем не лучше чего бы то ни было еще. Дискретные модели гомотопических типов пространств можно строить из чего угодно. Это важное концептуальное заключение, хотя не уверен, что с практической точки зрения оно будет иметь какие-то последствия в ближайшее время. Слишком хорошо проработана симплектическая теория, чтобы от нее отказываться. У кубов есть некоторые технические преимущества (произведение кубов снова куб), но они пока не перетягивают чашу весов.
Мне известен только один контекст, в котором симплексы появляются "естественно". Это комбинаторное описание полиэдров при помощи симплициальных комплексов. Топологи давно отказались от него из-за чудовищных категорных свойств, но комбинаторики, в особенности алгебраические, продолжают использовать, приводя даже топологические аргументы, которые не всегда просто перевести на язык симплициальных множеств, хотя такой перевод добавляет понимания.
Мы по-разному понимаем вопрос "Как оно все устроено на самом деле?"
С моей точки зрения, то, что что-то можно делать иначе, не имеет к нему никакого отношения.
Симплексы появились естественно в теории гомологий. То, что произведение кубов является кубом, известно давно, и даже использовалось, но то, что за почти 60 лет это не привело к распространению кубов, на мой взгляд, кое-то о них говорит.
Симплексы появились естественно в теории гомологий -- Вы слишком часто используете слово "естественно". Поскольку в теории категорий оно имеет строгий смысл, мне все время хочется потребовать у Вас доказательство. Кубы тоже появились в теории гомологий, ну и что? Как определить кто более естественен? Ответ на вопрос: "Чем симплексы лучше?", получен -- ничем (кроме леммы Мура, с которой вопрос пока открыт). Все кроме комбинаториков (или комбинаторов?) вроде бы удовлетворены. Видимо Вы занимаетесь комбинаторикой. Учитывая Вашу эрудированность в некоторых областях, скорее алгебраической комбинаторикой. Прошу не считать это попыткой вскрыть Вашу real identity.
Нет, мое употребление слова "естественный" имеет слабое отношение к его специфическому категорному смыслу. Пересечение, конечно есть. Я использую его в обычном разговорном смысле.
Кубы появились в теории гомологии - и исчезли. Для меня это свидетельство того, что они неестественны. То, что и симплексы, и кубы, и еще что-то удовлетворяют некоторому набору аксиом, никак не может означать, что симплексы "ничем не лучше". Может, они лучше чисто психологически - о них легче думать. Есть масса конструкций, которые ведут к каноническому разбиению на симплексы полезных пространств. И я не знаю ни одной конструкции, ведущей к разбиению на кубы чего-нибудь, кроме куба.
Любопытно, что меня уже не в первый раз принимают за специалиста по алгебраической комбинаторике. Правда, раньше принимали за вполне конкретного.
Кубы появились в теории гомологии - и исчезли -- до конца никогда не исчезали; Рони Браун даже как-то обиделся на Жардина за то, что тот высказался в этом духе в своем препринте. Но даже если и исчезли, вон теперь снова появились. Это о чем говорит? Миша Поляк как-то агитировал за кубические комплексы, через которые удобно определять инварианты конечного типа. Одним из аргументов был следующий. Помните старые советские пакеты из-под молока? Тетраэдральные? Так вот, в конце концов их заменили на прямоугольные параллелепипеды, так что кубы всегда побеждают.
Может, они лучше чисто психологически - о них легче думать -- может быть, но этот эффект не измерить. На одном семинаре по комбинаторике меня позабавило, что докладчик все время говорил про джойны симплициальных комплексов, но ни разу не упомянул про их произведение. В какой-то момент я спросил почему бы не воспользоваться произведением? На что получил ответ, что оно не определено. Я попытался объяснить, что можно перемножить пространства, а потом взять какое-нибудь разбиение на симплексы, и что с джойном по сути происходит тоже самое, но тут меня спросили что такое джойн топологических пространств... Вобщем стало понятно, что у нас отсутствует достаточная общая база для конструктивного обсуждения. Не от излишнего ли увлечения симплексами это произошло?
...я не знаю ни одной конструкции, ведущей к разбиению на кубы чего-нибудь, кроме куба -- скорее всего такая конструкция Вам пока была не нужна. Не думаю что возникли бы сложности с ее построением, понадобись она кому-нибудь. Например аналог сингулярного функтора в кубическом случае имеется.
Вряд ли Вы считаете аргумент с молочными пакетами серьезным -- нет, но в статье по ссылке приведены более серьезные аргументы в пользу кубических комплексов.
Сколько работ используют симплициальные множества и "симплициальные комплексы" (в классическом смысле), и сколько - кубы? -- никто и не спорит с тем что симплексы на сегодняшний день гораздо более популярны, но чтобы показать, что они чем-то лучше кубов или чего бы то ни было еще, нужно представить какой-то метод/принцип/урверждение верное/применимое для симплексов и неприменимое к чему бы то ни было еще. У леммы Мура есть потенциал стать таким утверждением.
Я не знаю естественно возникающего пространства с естественным разбиением на кубы - я что-то перестал понимать о чем вы говорите. Приведите пожалуйста пример "естественного" разбиения на симплексы какого-нибудь пространства.
это значит только то, что он плохо учился - нет, области настолько далеко разошлись, что современные комбинаторики часто вовсе не знают алгебраической топологии, а современные топологи понятия не имеют о классических симплициальных комплексах, равно как и об операциях над ними. Мало кто из топологов знает, например, что такое алгебраический сдвиг.
Ой, я на эту тему прослушал ровно один доклад (вот по этой статье). Имеется также обзорная статья основателя области. sowa бы наверняка лучше рассказал, но тогда он засветится с головой.
С точки зрения топологии это некий оператор на симплициальных комплексах, всегда выдающий букет сфер (или даже окружностей, не помню точно) на выходе. Интересно что он "идемпотентен", т.е. повторное применение ничего не меняет. Этим он напоминает многие важные конструкции в топологии под общим названием локализации (например сечение Постникова). Существенное отличие: никакой функториальности. Я тогда пытался придумать как бы вписать эту конструкцию в общую картину, но ничего не надумал. Сейчас, правда, появились примеры нефункториальных локализаций. Наверное стоит снова взглянуть на алгебраический сдвиг.
А что такое k-set? -- по-моему просто множество из k чисел. Действительно странный термин.
...не возникает желания знакомиться... -- я не пытался Вас сагитировать. Ссылку на обзорную статью дал только потому, что не смог быстро вычленить определение. Понадеялся на Вас.
Ну просто вы сказали: "Мало кто из топологов знает, например, что такое алгебраический сдвиг". Звучит так, что им бы следовало это знать. А мне топология нравится, а эти сдвиги, судя по тому, что я в начале этой статьи увидела, -- совсем нет. И вот Сове тоже не понравилось. Так что, может, это не топологи виноваты, что они про алгебраический сдвиг не знают? :-)
Звучит так, что им бы следовало это знать -- нет, это всего лишь пример того, насколько далеко разошлись эти области. Для комбинаторики вроде бы важная концепция. Нужна ли она топологам? Не думаю. Разве что удасться что-нибудь продвинуть в комбинаторике.
Как оно все устроено на самом деле? -- Кроме симплициальных комплексов топологи рассматривали также кубические (Серр их использовал для вывода спектральной последовательности расслоения). Потом необходимость в них в основном отпала и их почти прекратили изучать (кроме Бангорской школы). Зато симплициальные комплексы переросли в симплициальные множества и развились в полноценную гомотопическую теорию. Оставался вопрос, а можно ли то же самое повторить для кубических множеств или каких-нибудь других, или же симплексы (категория конечных ординалов) какие-то особенные? Гротендик предложил рассматривать тестовые категории, характеризующиеся двумя свойствами: во-первых они должны быть стягиваемыми, а второе свойство более техническое, но наверняка имеет явный геометрический смысл, просто я что-то не соображу сейчас; вот лекция Жардина на эту тему. Так вот, первая гипотеза заключалась в том, что предпучки на тестовых категориях должны оснащаться модельной структурой эквивалентной пространствам. Эта гипотеза (и несколько других) была недавно (2003) доказана Сизинским (франц.; имеется так же пересказ Жардина по английски, который, кстати, за год до доктората Сизинского независимо построил модельную категорию для кубических множеств, но решил не публиковать когда увидел общее решение), а вся эта область получила название "гомотопической теории Гротендика" и активно развивается в основном, к сожалению, усилиями французской школы.
На сегодняшний день мне известно только одно утверждение, которое указывает на то, что симплексы чем-то лучше кубов или чего бы то ни было еще. Это лемма Мура говорящая что симплициальные группы автоматически фибрантны как симплициальные множества. Я спрашивал и у Жардина и у Сизинского, они не знают выполняется ли это свойство в других категориях. Хорошая тема для мастерской диссертации.
Зашкалил за лимит ЖЖ для длинны комментов, продолжение следует.
Reply
Спасибо за ссылки. Все это очень интересно, но мне осталось непонятным, почему это отвечает на вопрос "Как оно все устроено на самом деле?".
Симплексы, на мой взгляд, хороши тем, что возникают естественно.
Reply
Мне известен только один контекст, в котором симплексы появляются "естественно". Это комбинаторное описание полиэдров при помощи симплициальных комплексов. Топологи давно отказались от него из-за чудовищных категорных свойств, но комбинаторики, в особенности алгебраические, продолжают использовать, приводя даже топологические аргументы, которые не всегда просто перевести на язык симплициальных множеств, хотя такой перевод добавляет понимания.
Reply
С моей точки зрения, то, что что-то можно делать иначе, не имеет к нему никакого отношения.
Симплексы появились естественно в теории гомологий. То, что произведение кубов является кубом, известно давно, и даже использовалось, но то, что за почти 60 лет это не привело к распространению кубов, на мой взгляд, кое-то о них говорит.
Reply
Reply
Кубы появились в теории гомологии - и исчезли. Для меня это свидетельство того, что они неестественны. То, что и симплексы, и кубы, и еще что-то удовлетворяют некоторому набору аксиом, никак не может означать, что симплексы "ничем не лучше". Может, они лучше чисто психологически - о них легче думать. Есть масса конструкций, которые ведут к каноническому разбиению на симплексы полезных пространств. И я не знаю ни одной конструкции, ведущей к разбиению на кубы чего-нибудь, кроме куба.
Любопытно, что меня уже не в первый раз принимают за специалиста по алгебраической комбинаторике. Правда, раньше принимали за вполне конкретного.
Reply
Может, они лучше чисто психологически - о них легче думать -- может быть, но этот эффект не измерить. На одном семинаре по комбинаторике меня позабавило, что докладчик все время говорил про джойны симплициальных комплексов, но ни разу не упомянул про их произведение. В какой-то момент я спросил почему бы не воспользоваться произведением? На что получил ответ, что оно не определено. Я попытался объяснить, что можно перемножить пространства, а потом взять какое-нибудь разбиение на симплексы, и что с джойном по сути происходит тоже самое, но тут меня спросили что такое джойн топологических пространств... Вобщем стало понятно, что у нас отсутствует достаточная общая база для конструктивного обсуждения. Не от излишнего ли увлечения симплексами это произошло?
...я не знаю ни одной конструкции, ведущей к разбиению на кубы чего-нибудь, кроме куба -- скорее всего такая конструкция Вам пока была не нужна. Не думаю что возникли бы сложности с ее построением, понадобись она кому-нибудь. Например аналог сингулярного функтора в кубическом случае имеется.
Reply
"...может быть, но этот эффект не измерить."
Очень даже можно. Сколько работ используют симплициальные множества и "симплициальные комплексы" (в классическом смысле), и сколько - кубы?
Если кто-то не знает, как триангулируется произведение двух симплексов - это значит только то, что он плохо учился.
Про сингулярные кубические гомологии я знаю. Я не знаю естественно возникающего пространства с естественным разбиением на кубы.
Reply
Сколько работ используют симплициальные множества и "симплициальные комплексы" (в классическом смысле), и сколько - кубы? -- никто и не спорит с тем что симплексы на сегодняшний день гораздо более популярны, но чтобы показать, что они чем-то лучше кубов или чего бы то ни было еще, нужно представить какой-то метод/принцип/урверждение верное/применимое для симплексов и неприменимое к чему бы то ни было еще. У леммы Мура есть потенциал стать таким утверждением.
Я не знаю естественно возникающего пространства с естественным разбиением на кубы - я что-то перестал понимать о чем вы говорите. Приведите пожалуйста пример "естественного" разбиения на симплексы какого-нибудь пространства.
это значит только то, что он плохо учился - нет, области настолько далеко разошлись, что современные комбинаторики часто вовсе не знают алгебраической топологии, а современные топологи понятия не имеют о классических симплициальных комплексах, равно как и об операциях над ними. Мало кто из топологов знает, например, что такое алгебраический сдвиг.
Reply
Reply
С точки зрения топологии это некий оператор на симплициальных комплексах, всегда выдающий букет сфер (или даже окружностей, не помню точно) на выходе. Интересно что он "идемпотентен", т.е. повторное применение ничего не меняет. Этим он напоминает многие важные конструкции в топологии под общим названием локализации (например сечение Постникова). Существенное отличие: никакой функториальности. Я тогда пытался придумать как бы вписать эту конструкцию в общую картину, но ничего не надумал. Сейчас, правда, появились примеры нефункториальных локализаций. Наверное стоит снова взглянуть на алгебраический сдвиг.
Reply
Заглянула в обзорную статью -- что-то это не очень интересно, не возникает желания знакомиться...
А что такое k-set? Они там появляются почти в самом начале, без определения.
Reply
...не возникает желания знакомиться... -- я не пытался Вас сагитировать. Ссылку на обзорную статью дал только потому, что не смог быстро вычленить определение. Понадеялся на Вас.
Reply
Reply
Reply
Reply
Leave a comment