Извлечение минералов из морской воды

Nov 10, 2012 10:07

Оригинал взят у serg70p в Извлечение минералов из морской воды


Оригинал взят у serg70p в Стране нужны паровозы, нам нужен металл! (PEAK2)

Извлечение минералов из морской воды

Общая потребность США в сыром, первичном металлическом магнии уже со времени конца второй мировой войны удовлетворялась за счет производства его из морской воды. Во время войны правительство США построило ряд заводов, которые использовали в качестве сырья для производства магния магнезит, доломит, откачиваемые из скважин рассолы и морскую воду. Однако к концу войны ни один из этих заводов не мог выдержать конкуренции с предприятиями, извлекающими магний из морской воды, и это несмотря на то, что первым заводам правительство гарантировало полный сбыт продукции, тогда как предприятия, работавшие на морской воде, таких гарантий не имели.

Выбор участка для постройки магниевого завода определяется не столь жесткими требованиями, нежели завода, получающего бром из морской воды. Исключение, правда, составляет тот случай, когда извлечения брома и магния производятся совместно. Так, в процессе экстрагирования магния температура морской воды не имеет серьезного значения, менее важен и расход сырья: на производство 1 фунта элементарного магния расходуется всего лишь 5% тех количеств морской воды, которые используются при экстракции брома. Самыми важными факторами, диктующими целесообразность выбора места для завода, являются близость источников дешевой извести, топлива и электроэнергии. Эффективность процесса извлечения магния из морской воды составляет 85-90%. И хотя современные технологические возможности позволяют значительно полнее экстрагировать магний из морской воды, экономически это невыгодно, так как подсчитано, что увеличение коэффициента извлечения более 90% сопровождается резким возрастанием капитальных затрат на каждый процент прироста.

Одно из достоинств, присущих рассматриваемому процессу, состоит в том, что низкая стоимость сырья может быть еще более уменьшена, если эти материалы подавать непосредственно в технологическую линию путем их перекачки. Такая механизированная подача позволяет сделать производственный процесс в значительной мере непрерывным и установить приборы автоматического контроля. Кроме того, положительная особенность завода такого типа состоит в чрезвычайном единообразии потребляемого им сырья.
Магниевые соединения

Магний в форме MgO, Mg(OH)2 и MgCl2 находит широкое применение в самых различных областях промышленности. Его используют как огнеупорный материал для внутренних покрытий в плавильных печах, как сырье для фармацевтического производства, в изоляторах, при производстве удобрений, искусственного шелка и бумаги и многого другого. Многие компании мира получают соединения магния из морской воды; в частности это характерно для Англии и США. Впервые промышленное извлечение магниевых соединений из морской воды проводилось как побочный процесс из остаточных рассолов при получении поваренной соли (Seaton, 1931; Manning 1936, 1938).



Рис. 11. Последовательность процесса на магниевом заводе компании 'Кайзер алуминум эид кемикл' близ Мосс-Лендинга (Калифорния).

Схема процесса извлечения магниевых соединений из морской воды изображена на рис. 11. Такую технологическую схему применяют на своих предприятиях компании "Кайзер алуминум энд кемикл корпорейшн" близ Мосс-Лендинга (Калифорния). Морская вода смешивается с прокаленным доломитом. Происходит осаждение гидроокиси магния, которая затем отстаивается в больших концентрационных емкостях. После отстаивания гидроокись магния извлекается, промывается для удаления растворимых примесей и фильтруется с целью уменьшить содержание воды примерно до 50%. Часть полученной таким образом гидроокиси магния поступает в продажу в виде гомогенизированного осадка на фильтре, оформленного как брикеты. Эта продукция используется при производстве бумаги и магнезиальной изоляции. Оставшаяся на фильтре часть осадка затем вновь прокаливается до образования различных сортов MgO, которые могут быть использованы при получении искусственного шелка, резины, изоляционных покрытий, огнеупорных кирпичей. На рис. 12 показан завод компании "Кайзер" по производству магниевых соединений.



Рис. 12. Завод по извлечению магния из морской воды компании 'Кайзер алуминум энд кемикл' близ Мосс-Леидинга (Калифорния) (снимок с самолета).

В США около 90% всего объема каустической кальцинированной окиси магния и около 50% огнеупорной магнезии получают из морской воды либо из рассолов, выкачиваемых из скважин.
Золото из морской воды

На разработку методов извлечения золота из морской воды потрачено так много сил и средств, что в этом отношении с ним трудно сравнивать какой-либо другой элемент. По вопросам, связанным с экстракцией золота из морской воды, было выдано много патентов, касающихся как самих методов, так и оборудования (Bardt, 1927; Baudin, 1916; Bauer, 1912; Cernik, 1926; Bitter, 1938; Stoces, 1925). В 1866 г. один из членов Французской Академии наук обнаружил присутствие ничтожных количеств золота в морской воде. А позднее, в 1886 г., было сообщено, что содержание золота в водах Ла-Манша составляет до 65 мг на 1 т воды.

В начале этого столетия Сванте Аррениус указал, что прежние определения содержания золота в морской воде были преувеличены, по крайней мере, в 10 раз. Но, тем не менее, расчеты самого Аррениуса показали, что минимальное содержание золота в морской воде не ниже 6 мг на 1 т. По этим расчетам, в Мировом океане заключено примерно 8 млрд. т золота. Такого количества золота вполне достаточно, чтобы сделать каждого человека на земле миллионером. Но, несмотря на многочисленные патенты и проекты, до сих пор из морской воды не получено еще никаких практически ощутимых количеств этого металла.

В конце первой мировой войны блестящий немецкий химик, лауреат Нобелевской премии доктор Фриц Хабер утверждал, что военный долг Германии можно оплатить золотом, извлеченным из моря. Считая, что концентрация золота составляет 5-10 мг на 1 т морской воды, Хабер укомплектовал исследовательское судно соответствующим персоналом и оборудованием для изучения наиболее высоких содержаний золота в океанах. Однако к своему большому огорчению, Хабер установил, что концентрации золота редко превышают 0,001 мг на 1 т воды (Haber, 1927). Самое высокое содержание золота отмечается в Южной Атлантике и составляет 0,044 мг на 1 т. Даже в заливе Сан-Франциско, куда впадают реки, дренирующие золотоносные районы, концентрация золота не намного превосходит среднее содержание этого элемента в открытом океане. После 10 лет, посвященных работе над этой проблемой, Хабер пришел к заключению, что извлечение золота из морской воды невыгодно. В настоящее время установлено, что полученные Хабером значения содержаний золота в морской воде являются несколько неточными, поскольку он не учитывал, очевидно, присутствия золота в химикалиях и в реакционных сосудах, которыми он пользовался во время анализов.

Методы экстракции золота из морской воды основаны на использовании сульфидных частиц, которые обладают большим сродством к золоту. При прохождении морской воды над этими частицами золото, как полагают, прилипает к поверхности сульфидов. Кроме того, в качестве материала для извлечения золота из морской воды предлагалась также ртуть.

Несмотря на множество попыток экстрагировать золото из морской воды, известен всего лишь один случай, когда были получены сколь-либо ощутимые количества этого металла. В связи с широко развернутыми работами на заводе по извлечению брома в Северной Каролине "Этил дау кемикл компани" проводила исследование возможностей экстракции других металлов, включая золото. В результате переработки 15 т морской воды удалось извлечь 0,09 мг золота, стоимость которого составляет примерно 0,0001 долл. На сегодня это ничтожное количество составляет все то золото, которое было извлечено из морской воды (Terry, 1964).
Другие вещества, извлекаемые из морской воды

Помимо обычной соли, брома, магния и его соединений, из морской воды иногда извлекается ряд других веществ. Они, как правило, являются побочными продуктами при производстве соли либо их получают через промежуточное посредничество некоторых растений или рыб.

Впервые йод был обнаружен в золе водорослей в 1811 г. французом Бернаром Куртуа, владельцем фабрики по производству селитры. В поисках подходящего сырья для получения щелочи он решил использовать для этой цели водоросли. Очищая реакционные сосуды, в которых находилась горячая концентрированная серная кислота, он обратил внимание на выделения испарений фиолетового цвета, из золы водорослей. Пары конденсировались на стенках более охлажденной части сосуда в виде темных металлоподобных кристаллов (Armstrong, Miall, 1946). Содержание йода в некоторых водорослях, в частности в Laminaria, оказалось равным примерно 0,5% в пересчете на воздушно-сухую основу. Концентрация же йода в морской воде равна приблизительно 0,05 мг/л, или около 0,000005%. Таким образом, в указанных видах водорослей происходит 100000-кратное концентрирование йода в сравнении с его содержанием в морской воде.

Вскоре после открытия Куртуа было установлено значение йода для медицины. Началось интенсивное развитие промышленности, главным образом в Северной Англии, по извлечению йода из морских водорослей. В 1846 г. в Глазго функционировало более 12 фабрик, экстрагирующих йод из морских водорослей. Однако обнаружение йода в чилийских залежах нитратов привело к упадку добычи йода из морских водорослей.

Примерно в то же время из морских водорослей извлекались значительные количества калиевых и натриевых солей. Технология этого процесса, по существу, была не разработана. Обычно проводилось простое выщелачивание водорослей водой и последующее выпаривание полученного раствора. Другой весьма распространенный метод получения солей состоял в том, что водоросли сжигались, а зола выщелачивалась водой. В результате этих примитивных процессов йод получался в виде соединений - йодидов калия либо натрия, которые при смешивании их с серной кислотой и двуокисью марганца восстанавливались до элементарного йода.

В истории использования водорослей выделяются три различных периода: а) первый - когда водоросли применялись как сырье для получения щелочи, б) второй - когда их использовали для извлечения йода и в) третий - когда из водорослей добывали поташ. Однако каждый из периодов заканчивался созданием более совершенных методов получения этих продуктов из более дешевого сырья, добываемого на суше. В настоящее время водоросли используются как сырье для получения натриевого альгината - органического соединения, применяемого в качестве желатинообразующего и эмульсиообразующего агентов при производстве продуктов питания. Крупные предприятия, перерабатывающие морские водоросли в качестве сырья для производства рассматриваемых химических соединений, размещены на побережье Южной Калифорнии. Во многих частях света, особенно на Востоке, водоросли широко используются как продукты питания. В некоторых приморских странах их применяют в качестве удобрений.
Добыча минеральных соединений при опреснении морских вод

В последние годы уделяется особое внимание проблеме опреснения морских вод. Как правило, концентрация солей в сбросных водах в этом случае во много раз превышает содержание этих солей в исходной морской воде. В ходе работ по извлечению минеральных соединений из таких рассолов получены весьма обнадеживающие результаты. Это относится к снижению расходов по перекачиванию вод, поступающих на перерабатывающий завод с относительно высокой температурой рассола и примерно в 4 раза повышенной концентрацией.

Если процесс опреснения морской воды окажется рентабельным, то количество минеральных соединений, которые можно было бы извлекать из сбросных вод, во много раз превысит ожидаемые потребности. Допустим, например, что в ближайшие несколько десятков лет население прибрежных областей достигнет примерно 100 млн. человек, которые будут ежегодно расходовать для бытовых и промышленных целей в среднем по 100 тыс. галлонов воды на душу населения. Такой темп потребления в конечном итоге может достичь величины примерно 1013 галлонов, или 10 куб. миль, воды в год. При поступлении этого объема воды из океана и эффективности извлечения пресной воды 25% через перерабатывающие опреснительные заводы будут проходить 6,4 млрд. т хлорида натрия, 240 млн. т магния, 160 млн. т серы, 800 тыс. т бора, 2 тыс. т алюминия, 400 т марганца, 560 т меди, 560 т урана, 2 тыс. т молибдена, 40 т серебра и около 1 т золота. Будем считать, что экономически выгодно добывать лишь 10% этих количеств и что население, для которого проводилось опреснение морской воды, способно потреблять эти минеральные компоненты. Тогда, основываясь на статистических данных, помещенных в табл. 3, можно сделать вывод, что темпы извлечения молибдена, бора и брома будут соответствовать их потреблению, в то время как производство других минеральных соединений будет значительно превышать потребность в этих веществах. Разумеется, нет никакой необходимости в извлечении всех солей. Целесообразно получать лишь те соли, которые пользуются сбытом. Во всяком случае, в связи с техническими трудностями маловероятно, чтобы в настоящее время проводилось промышленное извлечение какого-либо элемента, концентрация которого в морской воде ниже, чем бора. Заслуживают внимания, однако, следующие соображения. Если удалось бы извлечь из морской воды уран и торий, то использование этих элементов в реакторах бридерного типа дало бы тепловую энергию, необходимую для работы конверсионных заводов по производству пресной воды.

Таблица 3. Количества минеральных компонентов (в т), которые можно было бы извлечь из сбросных рассолов конверсионных заводов с производительностью 1013галлонов пресной воды в годЭлементГодовая 
продукция, тПроизводство на душу 
населения при общей 
его численности 108 
человек, т/годСовременное 
потребление 
в США на душу
населения,
т/годОтношение 
производства 
к потреблениюNaCl64*108640,145440Магний2,4*1082,425*10-410000Сера1,6*1081,60,03350Калий68*1060,680,01068Бром1,2*1060,0124,7*10-425Бор0,8*1060,0085,5*10-415Алюминий20002*10-50,0130,001Марганец4004*10-60,00330,001Медь5607*10-60,00670,001Уран5605*10-61,4*10-40,04Молибден20002*10-58,3*10-524Серебро406*10-73,0*10-50,02Никель4004*10-60,0010,004Золото12*10-95,0*10-60,0004
В настоящее время сконструированы крупные ядерные реакторы, которые могли бы обеспечить тепловой и электрической энергией конверсионные опреснительные установки (Hammond, 1962) Подсчитано, что стоимость производства пресной воды составляет примерно 0,15 долл. за 1000 галлонов, что успешно выдерживает сравнение со стоимостью воды, потребляемой в городском хозяйстве или для ирригационных целей в некоторых районах. Крупный завод с реакторной установкой может производить ежедневно около 109 галлонов пресной воды; этого количества должно хватить для удовлетворения бытовых и хозяйственных нужд города с 4-миллионным населением либо для орошения посевов площадью 500 кв. миль. Трудно ожидать, однако, чтобы такие заводы стали в ближайшие несколько десятков лет серьезными источниками снабжения пресной водой. Недостаточно аргументированным является также и предположение о будущем потреблении минеральных компонентов морской воды и о характере изменения цен и других расходов. Иными словами, статистические выкладки, помещенные в табл. 3, представляют лишь теоретическую ценность.

МеталлБалВаал, gold, Наука, Вода, Франки, Ядрённо_Томный, Энержи ржи ржи

Previous post Next post
Up