Originally posted by
nanonews. at
МФТИ и МГУ разработали для агрохимии компьютерную модель, предсказывающую активность молекул Для построения модели авторы применили методы машинного обучения, в частности - cамоорганизующиеся карты Кохонена
© Дмитрий Феоктистов/ТАСС
МОСКВА, 16 февраля. /Корр. ТАСС Александра Борисова/. Ученые из МФТИ и МГУ под руководством Яна Иваненкова впервые разработали компьютерную модель, позволяющую предсказывать агрохимическую активность - наличие полезного воздействия на растения - простых молекул. С использованием независимого тестового набора и результатов собственного исследования было показано, что модель обладает высокой предсказательной способностью. Работа опубликована
в научном журнале Phytochemistry, рассказали в МФТИ.
Прогностическая способность
Для построения модели авторы применили методы машинного обучения, в частности - cамоорганизующиеся карты Кохонена. В качестве обучающей выборки использовалась уникальная выборка, включающая 1800 тщательно отобранных известных агрохимикатов. В качестве источников информации авторы использовали патенты, научные публикации и специализированные базы данных. Важно отметить, что модель также способна прогнозировать класс активности молекул (какое именно воздействие на растение она будет оказывать), причем с довольно высокой точностью - 87%, и предсказывать активность молекулы с точностью 67%.
-
- Построенная модель Кохонена: зеленый градиент на заднем фоне соответствует молекулам - активаторам роста растений из обучающей выборки, более темные области заселены большим количеством молекул. Кружками показаны молекулы из тестового (экспериментального) набора. Видно, что большинство протестированных молекул лежит в темных областях, что свидетельствует о высокой предсказательной способности модели.
Построенная модель Кохонена: зеленый градиент на заднем фоне соответствует молекулам - активаторам роста растений из обучающей выборки, более темные области заселены большим количеством молекул. Кружками показаны молекулы из тестового (экспериментального) набора. Видно, что большинство протестированных молекул лежит в темных областях, что свидетельствует о высокой предсказательной способности модели.
© Bushkov et. al./Phytochemistry
«
Лаборатории разработки инновационных лекарственных средств удалось протестировать модель с использованием результатов реального тестирования, осуществленного нами. В дальнейшем мы планируем расширить обучающую выборку и повысить прогностическую способность модели, возможно с применением других алгоритмов машинного обучения», - прокомментировал основные результаты работы и дальнейшие планы Ян Иваненков, главный автор статьи и заведующий
Лабораторией медицинской химии и биоинформатики МФТИ.
Пестициды и регуляторы роста
Молекулы, интересные с точки зрения агрохимии, принято делить на две категории: пестициды (которые борются с насекомыми, сорняками и грибками) и регуляторы роста растений (стимулирующие или подавляющие их рост). Для того, чтобы обнаружить новую активную молекулу из какой-либо группы, проводят дорогостоящие эксперименты - синтезируют большое количество (обычно несколько тысяч) разнообразных молекул, а затем проверяют их эффект на клетках или целых растениях. При этом в таких экспериментах значителен процент промахов - активными в лучшем случае могут оказаться лишь несколько десятков молекул.
Разработанная модель может быть использована с целью обоснованного уменьшения изначального количества молекул из числа доступных для дальнейшей экспериментальной проверки. Это позволит значительно снизить как временные, так и финансовые затраты на поиск активных молекул.
Обучение алгоритма
В своей работе авторы для моделирования использовали представление химического пространства, в котором каждая молекула описывается набором особых параметров - молекулярных дескрипторов. Значение такого дескриптора отражает особое свойство молекулы - растворимость, размер, площадь полярной поверхности и т. д. Каждая молекула в химическом пространстве задаётся (кодируется) набором таких параметров, как точка - своими координатами на плоскости.
-
- Дибензазепин - регулятор роста растений, одна из молекул, правильно классифицированная моделью
Дибензазепин - регулятор роста растений, одна из молекул, правильно классифицированная моделью
© Bushkov et. al./Phytochemistry
С использованием алгоритма Кохонена без учителя можно уменьшить размерность этих данных с наименьшей ошибкой (этот этап назвается обучением алгоритма) и визуализировать результат в виде удобной для анализа двумерной карты, на которой можно поочередно выделить области, занимаемые молекулами из различных категорий. Тогда по этой карте можно оценить классификационную способность модели. Если эта способность в высока (например, для подобных масштабных задач это больше 70%), то модель можно протестировать с использованием независимого тестового набора молекул, которые не принимали участие в обучении. Именно это и сделали авторы работы, наглядно продемонстрировав, что их модель способна прогнозировать специфическую активность новых молекул, относя их к одной из общепринятых категорий: гербициды, регуляторы роста растений и т.п.
В будущем подобные вычислительные модели позволят значительно удешевить поиск новых активных молекул и внесут свой вклад в понимание механизмов их действия.