Взгляд из прошлого (продолжение 4)

May 25, 2013 12:45

/Очень интересный материал - мнение Константина Феоктистова о прошлом, настоящем и будущем космонавтики, опубликованное им в далеком 1991 году. Можно сравнить, как это все виделось тогда и как это выглядит сейчас, что предлагалось и прогнозировалось и что в итоге получилось./
---------------------------------
Константин Феоктистов: космонавтика без фанфар и амбиций. Часть 5 ( Часть 4, Часть 3, Часть 2, Часть 1)

11. МАРСИАНСКАЯ ЭКСПЕДИЦИЯ



Иллюстрация wollsen специально для ru-deep-space

Зачем? Почему именно сейчас нам нужно это грандиозное предприятие? Убедительных доводов нет. Напротив, легко проглядывается элемент детской логики: «Туда можно добраться - значит, туда нам и нужно!»


И действительно:

- Меркурий: и добраться труднее (требуется большая энергетика), и слишком жарко, и атмосферы нет, и делать вроде бы нечего - та же каменистая пустыня, что и на Луне;

- Венера: на поверхности, мягко говоря, слишком жарко (450-500 °С) и давление совершенно непереносимое (100 атм) - нельзя там высаживаться;

- Юпитер, Сатурн и далее: всё хуже и сложнее - и энергетики потребуется гораздо больше, и сила тяжести выше, а уж об атмосфере лучше и не вспоминать.

А вот Марс - совсем другое дело: сила тяжести на поверхности - 0,4 от земной, атмосфера хотя и разреженная, но всё же есть, да и температурные условия полегче, чем на Луне.

Одним словом, Марс и понятнее и доступнее.

Правда, не очень ясно, зачем посылать туда экспедицию? «Ну а как же? Рано или поздно нам предстоит колонизировать Марс». Но зачем колонизировать Марс? Он явно непригоден для жизни людей. Можно, конечно, представить создание на Марсе базы (когда поймём, если только поймём, зачем она нужна), но в чём необходимость колонизации?..

И всё же есть одна задача, решение которой могло бы оправдать посылку экспедиции на Марс. Речь о поисках жизни на этой планете. Некоторые основания (правда, может быть, ничтожно малые) для надежд на успех имеются: есть остатки атмосферы, на снимках поверхности Марса найдены следы водной эрозии. А вдруг там есть простейшие организмы, простейшая жизнь на уровне, скажем, бактерий или грибков? Интерес представляют, собственно говоря, не сами гипотетические живые организмы, а механизм их воспроизводства. Каков он? Как на Земле (а на Земле с точки зрения устройства этого механизма все мы - и растения, и животные - родственники)? Если механизм одинаков, правдоподобна гипотеза «посева» жизни во Вселенной (это не было бы абсолютным доказательством: экспериментальная точка-то была бы одна). А если эти механизмы окажутся совершенно разными, получила бы важное подтверждение теория самозарождения жизни.

Конечно, было бы естественным попытаться «отловить» живые организмы с помощью автоматических аппаратов, высаживаемых на Марс. Это и делалось, но пока не получилось. И точек забора проб было слишком мало, и сама методика анализа проб «на жизнь» не очень убедительна.

Продолжением этих работ с автоматическими аппаратами может стать марсианская экспедиция. Её возможными задачами могли бы быть поиск и исследование районов поверхности Марса, где имеются хоть какие-то шансы отыскать признаки жизни, поиски живых организмов или растений, взятие проб грунта (в разных точках поверхности и на разной глубине) и атмосферы, первичное изучение этих образцов на месте (чтобы можно было скорректировать программу исследований при положительных результатах), доставка проб грунта и атмосферы на Землю, изучение поверхности Марса, его строения, его естественной истории...

Технические средства марсианской экспедиции в значительной степени определяются основными операциями, осуществляемыми во время полёта, собственно схемой полёта. Такой экспедиции естественно принять принципиальную схему американской лунной программы: старт с орбиты спутника Земли, перелёт к Марсу, выход на орбиту спутника Марса, спуск на поверхность планеты экспедиционного марсианского корабля с частью экипажа (остальные остаются на орбите спутника Марса в орбитальном корабле), проведение исследований на поверхности планеты, сбор проб грунта и атмосферы, возвращение экспедиционного корабля на орбиту спутника, его сближение и стыковка с орбитальным кораблём, переход участников высадки на орбитальный корабль, его старт с орбиты спутника Марса к Земле и возвращение экспедиции.

Сразу выделяются две составляющие: орбитальный и экспедиционный корабли. Их облик во многом зависит от количества топлива, которое нужно израсходовать для выполнения динамических операций, связанных с изменением скорости движения аппаратов. Топливо, расходуемое в конкретной динамической операции, определяется величиной требуемого приращения скорости, качеством двигателя и массой корабля. Поэтому при анализе до выбора конструктивной схемы и типа двигателя корабля энергетические затраты обычно характеризуют приращением скорости корабля (по интегратору) на различных этапах полёта.

Для корабля марсианской экспедиции эти затраты ориентировочно выглядят следующим образом.

1. Выведение комплекса с орбиты спутника Земли на траекторию полета к Марсу: 3,6-4 км/с (в зависимости от отклонения от оптимальной даты старта).

2. Затраты на орбитальном корабле:

- выход на орбиту спутника Марса: 0,1-1,5 км/с (в зависимости от способа выхода на орбиту и от её выбранных параметров);

- старт орбитального корабля с орбиты спутника Марса к Земле: 0,5-1,5 км/с (в зависимости от параметров орбиты спутника Марса);

- выход на орбиту спутника Земли: 0-3,2 км/с (в зависимости от выбранной схемы возвращения, то есть с прямым входом спускаемого аппарата в атмосферу Земли или с предварительной «остановкой» на орбите спутника Земли).

3. Затраты на экспедиционном корабле:

- сход с орбиты на траекторию спуска и посадка: порядка 0,2-0,3 км/с;

- выведение с поверхности Марса на орбиту спутника: в пределах 5,3-4,2 км/с (в зависимости от параметров орбиты, на которой ожидает орбитальный корабль);

- сближение и причаливание к орбитальному кораблю: 0,1-0,2 км/с.

Из приведённых данных вырисовываются вполне конкретные черты марсианского экспедиционного корабля (МЭК). Сразу можно представить его энергетику и образ.

Двигательных установок у МЭК две. Одна - на посадочном устройстве (для схода с орбиты и посадки), другая - на взлётной ступени (выведение на орбиту, сближение и стыковка с орбитальным кораблём).

Условия работы и большое количество включений двигателей (у управляющих их тысячи) определяют компоненты топлива: высококипящие и самовоспламеняющиеся, то есть в итоге токсичные, такие как, например, пара «азотный тетраксид - несимметричный диметилгидразин». Токсичность компонентов - крупный недостаток, тем более что космонавтам придётся выходить на «политую» ими поверхность планеты.

Да и есть тут что-то непорядочное: являются люди на чужую планету, где ищут жизнь, и начинают с того, что травят район посадки и живые организмы, которые они здесь же ищут. Но прагматические соображения подталкивают к надёжным и удобным для применения токсичным компонентам, да и репутация людей в глазах марсиан давно испорчена: те же компоненты применялись во всех садившихся на Марс автоматах.

Но неплохо бы поискать и нетоксичную пару высококипящих (то есть находящихся в виде жидкости при нормальной температуре), самовоспламеняющихся (для надёжности работы двигателей, включающихся десятки, сотни и тысячи раз), в меру стабильных ударопрочных компонентов. В принципе, есть пара, близкая по характеристикам к этим противоречивым требованиям: концентрированная перекись водорода и какое-нибудь нетоксичное углеводородное горючее с присадками, обеспечивающими самовоспламенение с перекисью. При этом нужно будет ещё найти присадки к перекиси водорода (флегматизаторы), которые повышали бы её стабильность.

На посадочном устройстве должно располагаться оборудование, которое понадобится во время спуска и пребывания экспедиции на поверхности, но ненужное при возвращении с Марса на орбитальный корабль: лобовой аэродинамический щит, используемый на основном участке торможения в атмосфере Марса и сбрасываемый после введения парашютной системы, сама парашютная система, лабораторный отсек для внутрикорабельных работ на поверхности Марса, электрогенераторы (скорее всего, изотопные), техника управления посадкой, система терморегулирования посадочного устройства и всего корабля, работающая на поверхности, включая подогреватели (вероятно, изотопные), необходимые во время марсианских ночей (да и марсианских дней тоже), оборудование и запасы систем жизнедеятельности (кислород и вода), шлюз и скафандры для выходов из корабля с необходимым бортовым оборудованием, средства связи, телевизионного обзора внешнего пространства, пульты и устройства отображения получаемой информации, марсоход, позволяющий совершать довольно дальние и длительные экспедиции, со своими системами электропитания, жизнедеятельности, связи, управления, системой терморегулирования и т. п., научное оборудование (атмосферные зонды, буровые установки, анализаторы, термостаты и т. п.).

Тут вырисовывается проблема объёма лабораторного отсека - ведь экспедиция будет работать на поверхности Марса, возможно, несколько месяцев. Иначе говоря, нужно иметь десятки кубометров объёма и отдельные каюты.

Сколько человек должно высадиться? Было бы разумным в районе посадки и на марсоходе вести работы параллельно. Тогда экипаж экспедиционного корабля должен состоять из четырёх космонавтов (в каждой команде по два человека - для дублирования). Если стремиться к минимуму, можно ограничиться двумя, которые то работают на месте посадки, то ездят на марсоходе. Последний вариант кажется не очень убедительным: лететь за тридевять земель, чтобы ограничиться минимальной деятельностью?.. Да и безопасность такой схемы сомнительна. Но есть компромисс: иметь не один, а два марсианских экспедиционных корабля - один с большим лабораторным отсеком для работ в месте посадки, а другой с марсоходом. Их приземление должно быть разнесено по времени, что позволит использовать второй экспедиционный корабль для оказания помощи первому в случае необходимости. А экипаж каждого - два человека.

Экспедиционный корабль стартует с Марса без посадочного устройства. В его состав, помимо взлётной ракетной системы, должны входить кабина, аппаратура управления, связи, телеметрии, терморегулирования, электропитания (скорее всего, на химических источниках тока: время автономного полета без посадочного устройства невелико), средства обеспечения жизнедеятельности экипажа и стыковочное устройство.

Проблема связи экспедиционного корабля с орбитальным может преподнести неприятный сюрприз: разве это дело, что связь между ними будет устанавливаться только два раза в сутки? И дело ещё более усложнится, если вспомнить о необходимости связи между экспедиционным кораблем и марсоходом, после того как последний уйдёт за горизонт. Проблему можно решить, если оставить орбитальный корабль на марсостационарной орбите. При этом орбитальный корабль висел бы неподвижно над Марсом, а его положение можно выбрать над точкой высадки. Тогда естественным образом обеспечивалась бы непрерывная связь орбитального корабля и с экспедиционным, и с марсоходом, а значит, и между ними (через орбитальный корабль). Такой вариант неплохо увязывается со схемой, в которой используется орбитальный корабль с электрореактивными двигателями.

Объём кабины экспедиционного корабля на двоих может быть весьма малым - около 3-4 куб. м.

Для орбитального корабля и связанных с ним проблем выведения на траекторию полёта к Марсу и выведения с орбиты спутника Марса на траекторию полёта к Земле такой определённости, как для экспедиционного, нет. Можно предложить два основных варианта решения задач выведения: использование электрореактивных двигателей и применение жидкостных реактивных двигателей.

В случае электрореактивных двигателей орбитальный корабль представляет собой единое целое с двигательной установкой. На этапах полёта от орбиты спутника Земли и до выхода на орбиту спутника Марса в его состав будет входить также марсианский экспедиционный корабль. Схема полёта марсианской экспедиции в этом случае выглядит так:

- разгон с низкой околоземной орбиты на стартовую высокую орбиту (за радиационными поясами), во время которого корабль движется два-три месяца в радиационных поясах Земли без экипажа (что связано с низкой тяговооружённостью кораблей с электрореактивными двигателями);

- выведение экипажа на стартовую высокую орбиту на специальном транспортном корабле, его сближение с орбитальным кораблём марсианской экспедиции, причаливание, переход экипажа в орбитальный корабль, отделение транспортного корабля;

- дальнейший разгон орбитального корабля на траекторию полёта к Марсу с помощью тех же электрореактивных двигателей;

- переход на орбиту спутника Марса за счёт тех же электрореактивных двигателей;

- ожидание на орбите возвращения экспедиционного корабля;

- старт с орбиты спутника Марса на траекторию полёта к Земле;

- прямой спуск экипажа экспедиции на Землю и выведение орбитального корабля без экипажа на околоземную орбиту вновь за счёт электрореактивных двигателей.

Схема характерна большими энергозатратами, так как при разгоне и торможении при сходе с орбиты спутника планеты или переходе на орбиту спутника с малой тягой величина скорости, описывающей энергозатраты, приблизительно удваивается. Поэтому если при использовании обычных химических РД с тяговооружённостью около единицы суммарная характеристическая скорость составит 4,5-7,3 км/с (включая затраты на уход с орбиты спутника Земли), то для корабля с электрореактивными двигателями эта величина равна 9-14 км/с (в зависимости от оптимальности дат старта и параметров орбиты марсианского спутника). Само по себе это не страшно: недостаток компенсирует высокая скорость реактивной струи. В электрореактивных двигателях можно получить скорость истечения порядка 50 000-100 000 м/с вместо 4 600 м/с даже в кислородно-водородных жидкостных двигателях. Поэтому топливо для этих операций у корабля с электрореактивными двигателями будет от 9 до 24%, а у комплекса с ракетными ступенями на химическом топливе - 63-80% от стартовой массы на орбите спутника Земли. В этом соотношении видно самое важное преимущество электрореактивных двигателей: увеличение конечной массы корабля (или массы марсианского экспедиционного корабля) слабо влияет на увеличение стартовой массы, а следовательно, и на общее усложнение предприятия при его разработке и создании.

Правда, корабли с электрореактивными двигателями имеют принципиальные недостатки: отсутствует опыт многолетней эксплуатации таких двигателей, нужна мощная бортовая энергоустановка, ресурс работы самих электрореактивных двигателей должен исчисляться тысячами часов.

Для стартовой массы комплекса около 250-300 т корабль должен иметь электростанцию мощностью 7-10 МВт с массой в 70-100 т.

Обычно в таких случаях рассматривались ядерные электростанции, но тогда ко всем осложнениям прибавлялась проблема радиационной защиты экипажа и оборудования при её приемлемой массе. Причём задача усугубляется тем, что её нужно решать не только во время полёта комплекса в целом (когда жилые отсеки и ядерный реактор неподвижны друг относительно друга и, следовательно, можно ограничиться теневой защитой), но и на участках, когда экспедиционный корабль уходит от орбитального и приближается к нему.

Корабль с ядерной электростанцией и электрореактивными двигателями можно представить в виде ряда составных частей, последовательно располагающихся вдоль его продольной оси: ядерная энергоустановка (ЯЭУ), включающая в себя реактор, теневая защита, экранирующая остальную часть конструкции и жилые отсеки от радиации ЯЭУ, электрореактивные двигатели с системой подачи рабочего тела к ним, бак с рабочим телом, ферма, соединяющая ЯЭУ с отсеками корабля, радиатор системы терморегулирования ЯЭУ для отвода тепла, не использованного в преобразователях, которые преобразуют тепло, выделяемое в реакторе в электроэнергию (геометрически это самая большая часть корабля), отсеки орбитального корабля, спускаемый аппарат, применяемый при возвращении на Землю, и экспедиционный корабль.

Преимущество этой схемы для марсианской экспедиции в том, что комплекс вытянут вдоль продольной оси, центр масс находится в районе соединительной фермы; кроме того, сравнительно просто может быть реализована искусственная тяжесть в жилых отсеках путём вращения комплекса вокруг оси, перпендикулярной они продольной (если, конечно, будет признано целесообразным наличие искусственной силы тяжести для экипажа марсианской экспедиции, которая может продолжаться 2-3 года).

Энергопроблемы могут серьёзно измениться, если использовать не ядерную установку, а солнечные батареи. Для мощности в 7-10 МВт потребуются солнечные батареи площадью около 10 000 кв. м. Солнечные батареи смогут конкурировать с ЯЭУ только в том случае, если масса ферменных конструкций и самих солнечных элементов, приходящаяся на один киловатт получаемой электроэнергии, не будет превосходить 7-10 кг. Эта задача может быть решена, если будут созданы плёночные солнечные батареи с массой 100-200 г на кв. м и с коэффициентом полезного действия порядка 5-7%. Таким образом, плёночные батареи могут понадобиться для марсианской экспедиции, солнечных орбитальных электростанций и орбитальных заводов. Вот одна из самых актуальных задач для современной техники.

Для варианта марсианской экспедиции с использованием только реактивных двигателей на химическом топливе очень важен выбор самой оптимальной по энергетике схемы полета.

Вот какой может быть эта схема:

- выведение на низкую околоземную монтажную орбиту кораблей экспедиции и доставка к комплексу марсианских кораблей экипажа с помощью транспортного корабля;

- выведение на монтажную орбиту водородно-кислородной разгонной ракеты (предназначенной только для выведения кораблей экспедиции на траекторию полёта к Марсу) и её стыковка с кораблями экспедиции;

- старт к Марсу (с отстыковкой разгонной ракеты после окончания её работы) в наиболее оптимальную дату, с тем чтобы ограничиться скоростью ухода с околоземной орбиты порядка 3,7-4,0 км/с;

- переход на сильно вытянутую эллиптическую орбиту спутника Марса практически без расхода топлива, за счёт торможения кораблей в атмосфере Марса (во время движения в атмосфере корабль придётся защищать от нагрева тепловым экраном);

- отделение экспедиционного корабля, его спуск, работа на Марсе, возвращение на орбиту, сближение и стыковка с орбитальным кораблем, переход экспедиционеров в орбитальный корабль, отделение экспедиционного корабля;

- отлёт орбитального корабля с орбиты спутника Марса к Земле с помощью маршевого двигателя объединённой двигательной установки орбитального корабля;

- при подлёте к Земле переход экипажа в спускаемый аппарат, вход его в атмосферу Земли со второй космической скоростью и приземление.

Чтобы как-то представить общие масштабы комплекса, назовём следующие величины: при общей массе орбитального и экспедиционного кораблей с их двигательными установками и топливом порядка 120 т масса комплекса может достичь 300 т.

Если экипаж экспедиции, высаживаемой на Марсе, состоит из четырёх человек, то общий состав марсианских путешественников должен включать не менее шести космонавтов.

Бортовые системы и вычислительные машины орбитального корабля должны обеспечивать управление и навигацию в полёте, связь с Землёй, с экспедиционным кораблём, с марсоходом, между экспедиционным кораблём и марсоходом - через орбитальный корабль и т. д.

Чтобы минимизировать массу корабля при столь долгом полёте, с целью обеспечения жизнедеятельности понадобится система, замкнутая по кислороду и воде.

Длительный полёт экспедиции вдали от Земли без возможности оказания прямой помощи космонавтам ставит вопрос об экспедиции из нескольких кораблей, которые помогали бы друг другу и в то же время не дублировали программы своих работ.

--------------------------------------------------
Еще по теме:

Бомбардировочные силы открытого космоса
Ответный удар
История советской космонавтики. Проект "Спираль"

Все самое интересное о космосе здесь - ru_deep_space

История космонавтики, Россия и космос, Интересное чтиво, Освоение космоса, Советская космонавтика

Previous post Next post
Up