io9's George Dvorsky
reported on the thought-provoking analysis by an American geologist of imagery of Mars taken by the Curiosity rover. One image, she argues, may well preserve in fossilized form the remnants of an ancient Martian marine ecosystem.
Working under the (fairly safe) assumption that Mars once featured extensive and persistent surface water, Old Dominion University geobiologist Nora Noffke examined photos taken by Curiosity as the rover traveled through the Gillespie Lake outcrop in Yellowknife Bay in hopes of finding signs of MISS - microbially-induced sedimentary structures.
These geological layers formed from "microbial mats" and can be found here on Earth in any number of environments, including tidal flats, lagoons, riverine shores, and lakes. Billions of years ago, these highly diverse microscopic communities of bacteria became trapped and were rearranged in shallow bodies of water. Their fossilized remnants are still identifiable today.
Noffke reasoned that if Mars once harbored early-stage microbial life, it probably looked a lot like Earth's early-stage microbial life, and that it would have left behind these tell-tale remnants.
Indeed, the Gillespie Lake outcrop would be a great place to look. It's one of many playas on the Red Planet - a dried up lakebed that was filled with water about 3.7 billion years ago. Noffke took a look at Curiosity's Gillespie photographs hoping to find similarities between similar structures here on Earth, specifically 3.48-billion-year-old MISS that she herself discovered in Western Australia's Dresser Formation. It's considered the oldest ecosystem ever found, and about 300 million years younger than previous finds. She also compared the images to sedimentary features found in Germany, the United States, and other locations in Australia.
In the ensuing study, Noffke shows dramatic similarities between Martian sedimentary structures found in the lakebed to microbial structures found on Earth. These features included geological remnants like cracks, chips, pits, pockets, domes, and roll-ups.