В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
Следует отметить, что выражаемое формулой A утверждение не содержит порочного круга, поскольку изначально утверждается только, что некоторая конкретная формула, явную запись которой получить несложно (хоть и громоздко), недоказуема. «Только впоследствии (и, так сказать, по воле случая) оказывается, что эта формула в точности та, которой выражено само это утверждение».
Эту теорему считают решением второй проблемы Гильберта о притиворечивости аксиом арифметики. Ответ звучит так:
непротиворечивость аксиом арифметики нельзя доказать, исходя из самих аксиом арифметики (если только арифметика не является на самом деле противоречивой)