История вычислительной техники, ч.8 Магнитные носители информации.

May 31, 2017 22:06

Магнитные носители информации.

Поскольку они часто будут упоминаться в дальнейшем, опишу их в одном месте.

Магнитная запись (любая) основана на свойстве магнитных материалов после воздействия магнитного поля сохранять некоторую намагниченность. Магнитное поле при записи создается записывающей головкой, затем при считывании в воспроизводящей головке (это может быть отдельная головка или та же, что при записи, если та же, она называется универсальной) наводится ЭДС, пропорциональная скорости изменения магнитного потока. Или (если воспроизводящая головка на магниторезисторе) сопротивление магниторезистора меняется в соответствии с магнитным потоком.

В качестве материала, на котором ведется магнитная запись, используется либо ферролак (лак, в который добавлены микроскопические частицы гамма-окиси железа или другого магнитного материала), либо тонкая пленка магнитного металлического сплава.

Достоинство магнитной записи состоит в том, что не надо создавать структуры, отвечающие за запись каждого бита (например, в памяти на ферритовых сердечниках один бит - одно ферритовое кольцо) или (при аналоговой записи) значения сигнала за короткий период времени. Поверхность магнитного носителя - просто слой с определенными свойствами, структура на нем создается в процессе записи.

Магнитная запись пришла в компьютерную технику из звукозаписи, где она начала использоваться гораздо раньше. Запись на магнитную проволоку известна с 1898 года, на ленту (первоначально бумажную) со слоем ферролака - с 1927 года. С 1932 года выпускались магнитофоны (фирмой AEG, Германия), пленку для них производила фирма BASF (тоже Германия). С 1941 года выпускались студийные магнитофоны с весьма приличным качеством записи.

Существует (если не считать экзотики вроде магнитных карт) 4 вида компьютерных устройств магнитной записи.
1. Магнитная лента.
2. Магнитный барабан.
3. Жесткий диск.
4. Гибкий диск (флоппи-диск).

Из них лента и гибкий диск используют гибкий носитель, находящийся в контакте с головками, барабан и жесткий диск - жесткий носитель, у них есть зазор между его поверхностью и головками (трение жесткого по жесткому - срок службы будет совсем малый). Магнитные ленты и дискеты - дешевый расходный материал, с небольшим сроком службы (истираются). Механизмы накопителей на магнитных лентах и гибких дисках служат долго, как и барабаны, и жесткие диски.

Магнитная лента (слой ферролака, нанесенный на прочную пластиковую пленку) в компьютерных ленточных устройствах используется на катушках. Выглядит накопитель на магнитной ленте так


Видно, что под каждой из катушек находится узкий глубокий карман, в который при работе опускается петля магнитной ленты. В центре находится блок головок и ведущий малоинерционный валик. Карманы для лены нужны потому, что катушки обладают большой инерцией и не могут быстро разогнаться или остановиться. Каждую катушку вращает свой двигатель, управляемый от фотодатчиков, определяющих, сколько ленты в кармане. Двигатель управляется так, чтобы нижняя часть петли ленты находилась примерно посередине кармана. Петли ленты в карманах дают возможность быстро начинать и прекращать протяжку ленты, давая время, за которое катушки разгонятся или остановятся.
Время доступа к данным может достигать нескольких минут и в основном определяется временем перемотки ленты к нужному месту.

Магнитный барабан - цилиндр, покрытый магнитным слоем. Цилиндр при работе постоянно вращается электродвигателем, у поверхности цилиндра находятся многочисленные магнитные головки. Они неподвижны - одна головка на дорожку, это обеспечивает высокое быстродействие (не надо ждать, пока головка переместится к нужной дорожке). Среднее время доступа - порядка миллисекунд, определяется временем, за которое нужный участок барабана подойдет к головке.
Выглядит магнитный барабан так


Справа виден электродвигатель, по всей длине барабана - магнитные головки, установленные в несколько рядов. Есть открытый сектор (в работающих устройствах он закрыт стеклом, чтобы пыль не проникала), через который видна поверхность барабана. На этот сектор смотрят, чтобы определить, нет ли задиров, возникающих, если головка коснется барабана. Если задир есть, эта дорожка неисправна и используют резервную дорожку (для чего в барабанах всегда было несколько резервных головок и соответствующих им дорожек), подключая резервную головку взамен той, что на поврежденной дорожке.
В более поздних барабанах ось цилиндра обычно была вертикальной, чтобы сила тяжести не создавала дополнительных биений при вращении.

Жесткий магнитный диск представляет собой один или несколько дисков, покрытых магнитным слоем. При этом в одном и том же объеме можно получить площадь магнитной поверхности гораздо больше, чем в барабане, а значит, записать гораздо больше данных.
Головка обычно одна на каждую поверхность, сервопривод перемещает ее на нужную дорожку. Из-а этого диск медленнее барабана, требуется время для перемещения головки на нужную дорожку.
Выглядит современный магнитный диск так


Устройство его, полагаю, понятно из надписей на рисунке. На рисунке диск показан без крышки, а в действительности он закрыт крышкой, для защиты от пыли и загрязнений.
Первоначально жесткие диски были несъемные, потом стали съемными, потом опять несъемными.

Что такое дискета (гибкий магнитный диск), надеюсь, все еще помнят. Желающие освежить в памяти - могут заглянуть сюда https://ru.wikipedia.org/wiki/Дискета
Дискеты всегда были сменными, а дисководы для дискет - устроены довольно примитивно, для удешевления. В частности, для перемещения головок на дорожку используется шаговый двигатель с червячной или ленточной передачей. Может использоваться как одна, так и обе стороны дискеты (при этом удваивается емкость). Скорость вращения, скорость передачи данных довольно низкие, время доступа велико в сравнении с жесткими дисками - потому что эти параметры для дискет, используемых в основном для обмена данными между компьютерами, не очень актуальны, в отличие от стоимости.

Основные форматы дискет:
- 8 дюймов (203 мм), емкость 80-1000 килобайт, с 1971 года.
- 5.25 дюйма (133 мм), емкость 110, 360, 720, 1200 килобайт, с 1976 года.
- 3.5 дюйма (89 мм), емкость 720, 1440, 2880 килобайт (2880 широкого распространения не получили, т.к. хватало и 1440, а потом появились флэшки гораздо большей емкости), с 1984 года.

Кто первым применил в компьютерах магнитную ленту и магнитный барабан - трудно установить точно. Идеи были достаточно очевидны и реализованы практически сразу, как возникла потребность.

Первый жесткий диск - 1956 год, см. https://en.wikipedia.org/wiki/IBM_305_RAMAC
Он имел объем 5 миллионов 6-битных символов (3.75 млн привычных нам 8-битных байт), занимал полтора квадратных метра площади, состоял из пятидесяти 24-дюймовых (610 мм) дисков, 100 рабочих поверхностей, на каждой 100 дорожек (емкость дорожки около 400 байт). Имелось два независимых держателя головок, перемещавшихся сначала между дисками, а потом вдоль радиуса диска на нужную дорожку. Среднее время доступа 0.6 секунды, скорость вращения 1200 оборотов в минуту, темп пересылки 8800 символов в секунду. Арендная плата за компьютер, основной частью которого был этот диск, составляла $3200 ($27 тысяч в ценах 2016 г.) в месяц. По стоимости это устройство было доступно только крупным организациям (как и все компьютеры тех времен). Как видим, все параметры с тех времен улучшились во много раз.
Выпущено около 1000 таких устройств, производство прекращено в 1961 году, сняты с эксплуатации последние из них в 1969.

Впоследствии диски стали содержать одну головку на рабочую поверхность, это значительно ускорило доступ, т.к. стало не нужно перемещать головки между дисками.

Первый жесткий диск со сменным носителем - IBM1311, 1962 год, емкость 2 млн 6-битных символов (1.5 мегабайт).

В 1965 году был выпущен жесткий диск со сменным носителем IBM2311 (для IBM-360). Он имел объем 7.25 мегабайт, впрочем, это номинальная цифра, достигаемая только при формате "один сектор на дорожку", реальный его объем был (при обычной длине секторов) около 5 мегабайт. Каждый сектор включает заголовок, и между секторами есть промежуток, поэтому чем больше секторов на дорожку, тем меньше объем. Диаметр дисков 14 дюймов (360 мм), 6 дисков, 10 рабочих поверхностей (внешние поверхности крайних дисков не использовались), среднее время доступа 85 мс, темп пересылки 156 кбайт/сек.
Впоследствии были выпущены диски со сменным носителем на 29, 100, 200 мегабайт (также в номинальных цифрах, фактически меньше), того же диаметра, 360 мм. Дисков в них стало больше при той же высоте (например, 29-Мб диск имел 11 дисков, 20 рабочих поверхностей), в основном емкость росла за счет увеличения числа дорожек на поверхность и плотности записи. Другие параметры также улучшались, так, 200-мегабайтный имел время доступа 30 мс и темп пересылки 806 кбайт/сек.

В 1973 году выпущен "Винчестер" - накопитель с дисками уменьшенного размера, сменный модуль был в закрытой оболочке с магнитными головками. Тем самым было исключено открытое состояние диска, имевшее место для более ранних жестких дисков, когда их ставили или снимали, защита от пыли и загрязнений резко улучшилась. "Винчестером" он назван потому, что типовой была конфигурация из контроллера и двух дисков, каждый по 30 мегабайт. Это напоминает название винтовки Винчестер 30-30, образца 1894 года, весьма популярной в США. Жесткие диски, в которых носитель постоянно заключен в корпус, защищающий его от загрязнений, с тех пор называют "винчестеры".

В 1980 году были созданы первые жесткие диски в формате 5.25 дюйма, емкостью 5 мегабайт (ST-506 фирмы Seagate), а в 1981 - 10 мегабайт, использовавшиеся в персональных компьютера.

В 1979 - IBM 3370, первый диск с тонкопленочными магнитными головками.

В 1983 - первый жесткий диск в формате 3.5 дюйма, вскоре ставшем основным форматом для персональных компьютеров (и остающемся основным поныне). 1988 - первый "низкопрофильный" диск этого формата, высота 1 дюйм. Именно такой формат (3.5 х 1 дюйм) имеют практически все современные диски для настольных компьютеров.

В 1990 году был выпущен диск IBM 0681, впервые использующий метод кодирования PRML (модификация его применяется во всех современных дисках), в 1991 - IBM 0663, впервые использующий магниторезистивные головки для чтения (также принадлежность всех современных дисков).

С повышением быстродействия магнитных дисков магнитные барабаны устарели и перестали применяться.
За время своего существования барабаны также резко улучшили свои характеристики. Например, применявшийся в М-1 барабан (1951) имел емкость 1.6 килобайт, а в 1970-е в СССР выпускались барабаны на 4.3 мегабайта (с двумя телами вращения, т.е. собственно барабанами, размещенными в одном шкафу), т.е. емкость на одно тело вращения возросла более чем в 1300 раз примерно за 25 лет.

Магнитные ленты.

Первоначально магнитные ленты имели довольно низкую плотность записи, в 1960 году в США переходили с продольной плотности 4 бит/мм на 8 бит/мм. Лента IBM времен 7-мегабайтного диска (1964-1965) имела плотность 32 бит/мм на каждую дорожку, 9 дорожек (8 информационных и контроль по нечетности) и объем 20 мегабайт на катушку, вмещавшую 750 метров ленты, причем поддерживался и прежний, 8 бит/мм формат.
Со временем емкость лент возрастала, но актуальность этого носителя с большим временем доступа для оперативного хранения информации падала. С распространением дискет (гораздо более компактных, чем катушки с лентой) ленты постепенно перестали применяться и для переноса данных между компьютерами. В настоящее время ленты (в кассетах) применяются только в стримерах - устройствах резервного копирования данных (до 4 терабайт, т.е. миллионов мегабайт, на кассету).

Как это все работает.

Магнитная цифровая запись может производиться либо по трем уровням, либо по двум.
Запись по трем уровням - на предварительно стертую ленту единица пишется импульсом одной полярности, ноль другой. Достоинство этого вида записи - самосинхронизация, каждый бит дает импульс при чтении (точнее, при чтении обычной магнитной головкой - два импульса разной полярности, но они легко преобразуются в один интегрирующей цепочкой из одного резистора и одного конденсатора). 1 или 0 - определяется полярностью импульса.
Запись по двум уровням - одному направлению намагниченности носителя присваивается (условно) значение 0, другому 1. Запись ведется намагничиванием носителя до насыщения в одном из двух направлений.
Запись по трем уровням требует предварительного стирания перед записью, что усложняет устройство, и амплитуда импульсов при чтении у нее вдвое меньше, чем при записи по двум уровням. Поэтому очень скоро то записи по трем уровням отказались.

Если требуется одиночная запись, т.е. запись одного бита (что характерно для ранних барабанов, использовавшихся как оперативная память, там все биты слова читались или писались впараллель), можно единицу писать как 010, а 0 как 000. При чтении единицы импульс есть, при чтении нуля нет. Нули, окружающие записываемое значение, нужны, чтобы стереть края предыдущей записи, если новая не в точности совпадает с ней по времени. Самосинхронизация не нужна - на барабане есть серводорожка, где записаны все единицы, они и показывают, когда читать очередное слово.

Во всех остальных случаях запись на магнитный носитель делается блоками из многих последовательно записываемых бит.

Распространение получила запись по двум уровням NRZ-1 (Non Return to Zero 1, по русски БВН-1, Без Возвращения к Нулю). При этом методе направление намагничивания (определяемое направлением тока в записывающей головке) не меняется при записи нуля, меняется при записи единицы. При чтении импульс появляется только при чтении единицы. Этот метод не является самосинхронизирующимся - очень трудно отличить 50 записанных подряд нулей от 51. Поэтому самосинхронизацию приходится вводить тем или иным методом.
Например, в лентах формата IBM (9 дорожек), пишутся на 8 дорожек 8 бит данных, а на девятую - бит дополнения по нечетности. Если все 8 бит данных равны нулю, бит дополнения равен 1, т.е. хотя бы одна единица имеется. Собрав по схеме "или" импульсы со всех 9 головок, получим импульс, означающий "читаем очередной байт".

Методы с самосинхронизацией.

Двухчастотные методы. Их два - фазовой и частотной манипуляции (ФМ и ЧМ).
ФМ - единицу пишем как 01 (здесь 0 и 1 - направления намагниченности ленты), ноль как 10. Получаем в середине битового интервала импульс положительной полярности (чтение 1) или отрицательной (чтение 0). Между битовыми интервалами импульс может быть (если биты одинаковые, записывается при битах 11 - 0101, при 00 1010) или не быть (01 - пишем 1001, 10, пишем 0110), его игнорируем. Следующий импульс ждем через 1 битовый интервал после принятого.
ЧМ - при единице есть переход в середине битового интервала, при нуле нет, между битовыми интервалами переход есть всегда. То есть биты 01 пишем как 0010 (если в конце предыдущего битового интервала был 1) или как 1101 (если в конце предыдущего битового интервала был 0). При чтении между битовыми интервалами импульс есть всегда, по нему синхронизируемся, в середине битового интервала импульс либо есть (1), либо нет (0).
В начале блока записываем синхропоследовательность, содержащую только нужные (к которым синхронизируемся) переходы. Для ФМ это 010101.., переходы только в центрах битовых интервалов. для ЧМ 0000 - переходы только на границах битовых интервалов.
Методы очень простые в реализации, их недостаток - возможны два перехода на бит (в отличие от БВН-1, где не более одного перехода на бит), что снижает плотность записи.

Трехчастотный метод МФМ (модифицированная фазовая модуляция).
Берем последовательность, полученную ФМ методом и модифицируем - переключаем направление намагниченности только на переходах 01, иначе не меняем его. Получается последовательность с интервалами между переключениями, равными 1, 1.5 или 2 битовых интервалам. Декодируется такая запись так: если в середине битового интервала есть импульс - это единица, иначе ноль. Поскольку интервал между импульсами не больше двух битовых интервалов, самосинхронизация не является серьезной проблемой, хотя сложнее, чем при двухчастотном методе.

Метод перекодирования 4-5.
Если расписать все возможные 5-битные последовательности (их тридцать две), видно, что 17 из них содержат не более одного нуля в начале и конце, а внутри не более двух нулей, обрамленных единицами. 16 из них можно использовать для записи шестнадцами 4-битных кодов, еще одну - как синхропоследовательность, используемую в промежутках, где ничего нет (например, не при магнитной записи, а при последовательной передаче данных по одной линии синхропоследовательность посылается, когда нет передачи данных).
Перекодировав таким образом 4 бита в 5, записываем полученный код по методу БВН-1. При этом получается трехчастотный код, интервал между переходами равен 1, 2 или 3 битовых интервала. Поскольку 1, 2 и 3 различать проще, чем 1, 1.5 и 2 при МФМ, это повышает плотность записи, хотя пишутся 5 бит, а не 4.

Существуют и другие подобные коды. Так, МЧМ основан на таком же преобразовании ЧМ, как используемое в МФМ преобразование ФМ. Кроме 4-5 существует множество других подобных методов перекодирования.

Общее название этих самосинхронизирующихся кодов - RLL (Run-length limited, т.е. ограниченная длина между переходами).
См. на английском https://en.wikipedia.org/wiki/Run-length_limited
Они широко используются в магнитной записи. Причем со временем, по мере того как аппаратура цифровой обработки все более дешевеет - все более сложные, но дающие больший выигрыш в плотности записи.

Следует отметить, что самосинхронизирующиеся коды имеют серьезное преимущество и при многодорожечной записи.
При плотности 32 бит/мм на дин бит приходится 30 мкм. Это значит, что все 9 головок блока должны быть выставлены параллельно с точностью лучше 10 мкм, т.е. (при ширине ленты 12.7 мм) с точностью лучше 0.1% ширины. Это ограничивает плотность записи при описанном выше методе записи БВН-1 на 9-дорожечную ленту. Повышение плотности в 2 раза (до 63 бит/мм) потребовало перехода на самосинхронизирующийся код МФМ. Разные биты одного байта при этом могут быть получены с некоторым разбросом по времени, но собрать их воедино после декодирования - не проблема.
Для магнитных дисков применение самосинхронизирующихся кодов обязательно, т.к. у них однодорожечная запись блока данных.

Использование кодов RLL - первый способ повышения плотности записи.

Второй способ - более сложные методы декодирования при чтении.
Простое пороговое обнаружение импульсов (выше порога - импульс, ниже - нет импульса) дает гораздо худшие результаты, чем корреляционная обработка, известная как PRML (Partial Response, Maximum Likelihood, т.е. максимальное подобие по частичным откликам). Поступающий воспроизводящей головки сигнал преобразуется аналого-цифровым преобразователем в цифровую форму, а затем сравнивается со всеми допустимыми RLL-кодами (используемыми в данном диске), и определяется, на какой из них он больше всего похож. Плотность записи с использованием этого метода повышается на 30-40%.
Теперь используется EPRML (Enhanced PRML), принцип тот же, но алгоритмы усовершенствованы. Он дает выигрыш не менее 20% (а возможно, до 70%) по сравнению с PRML.

Третий способ - улучшенное позиционирование головок на дорожке, с автоматическим отслеживанием положения дорожки. Для этого используется сервоинформация, записанная прямо на дорожке (она перемежается с данными). Это дает возможность увеличить плотность дорожек (их количество на миллиметр радиуса диска). Сервониформация - это две дорожки, сдвинутые относительно середины основной дорожки одна вправо, другая влево на половину ширины основной дорожки. На эти две дорожки пишутся разные сигналы, хорошо различимые (например, колебания разных частот). Когда головка позиционирована точно, эти сигналы равны. Если же один из них больше - надо сместить головку в соответствующую сторону, чтобы они стали равны. Если интервал между дорожками равен ширине дорожки (что типично), одна и та же дорожка сервоинформации является правой для дорожки слева от нее и левой для дорожки справа. Поэтому, чтобы знать, куда двигать головку, надо знать, к дорожке с четным или нечетным номером она позиционируется.

Четвертый способ - термокалибровка. Шаг между дорожками столь мал, что термическое расширение диска (при изменении его температуры) может привести к попадании головки на другую дорожку. Поэтому диск периодически проводит термокалибровку, считывая с дорожек информацию об их номере и внося на основании этого поправки в то, куда надо двигать головки для попадания на данную дорожку. С использованием встроенной сервоинформации потребность в термокалибровке уменьшилась, т.к. головкам теперь достаточно приблизительно попасть на дорожку, а дальше они по сервоинформации выставятся точно. Кроме того, по тому, насколько пришлось сдвинуть головку по сервоинформации, можно получить поправку, которую нужно ввести, чтобы сразу позиционироваться точно. Поэтому позиционирование по сервоинформации частично заменяет термокалибровку, а если часто идут обращения к дорожкам в разных частях диска, от самых внутренних до самых внешних, это заменяет термокалибровку полностью.
К сожалению, термокалибровка прерывает на некоторое время доступ к диску, что весьма нежелательно, например, при записи на CD-R, когда поток записываемых данных не должен прерываться. Поэтому встроенная сервоинформация, снижающая потребность в термокалибровке, полезна еще и в этом случае.

Пятый способ - уменьшение толщины носителя. В магнитных лентах для звукозаписи используется относительно толстый слой ферролака (6-16 мкм). В них важно получить высокий уровень считываемого сигнала во всем диапазоне звуковых частот. Верхние частоты записываются в самом верхнем слое (около 1 мкм толщиной), чем ниже частота, тем больше общая глубина записи и магнитный поток при чтении. В цифровой магнитной записи надо записывать короткие импульсы, а большой уровень сигнала на низких частотах не только не нужен, но и нежелателен, т.к. он повышает взаимовлияние участков и при чтении импульсы сдвигаются по времени. Поэтому в цифровой записи используется толщина носителя 1 мкм и даже меньше.

Шестой способ - приближение головок к носителю. Первоначально на магнитных барабанах головки располагались на расстоянии около 0.05-0.1 мм от поверхности носителя, что резко снижало плотность записи, т.к. частотная характеристика резко ухудшается при удалении головки от носителя (поэтому, кстати, при аудиозаписи верхние частоты пишутся только в самом верхнем слое носителя). При вращении диска или барабана возникает движение воздуха, увлекаемого им, и, придав головкам соответствующую форму, можно добиться, чтобы это движение создавало отталкивающую силу тем большую, чем ближе головки к носителю. Головки прижимаются к носителю пружинкой, а воздух отталкивает их при чрезмерном приближении к носителю, тем самым они скользят над поверхностью на малом расстоянии. Первоначально около 6 микрон, когда в 1962 году эта система была введена, в наше время гораздо ближе к носителю (сотые доли микрона при легких и миниатюрных тонкопленочных головках).

Седьмой способ - использование тонкопленочных магнитных головок. Такие головки изготовляются путем напыления слоев различных материалов (толщиной в микроны или доли микрона) на подложку. Головка получается весьма миниатюрная (что позволяет уменьшить расстояние между дисками) и с лучшими параметрами, чем изготовленная по обычной технологии.

Восьмой способ - использование магнеторезистивных головок чтения. Они основаны на гигантском магниторезистивном эффекте (GMR) https://ru.wikipedia.org/wiki/Гигантское_магнетосопротивление . Это квантовомеханический эффект (открыт в 1998 году), возникающий в тончайших (1 нанометр, т.е. миллионная доля миллиметра, и тоньше) чередующихся слоях из магнитного материала и немагнитного проводника. Такая структура очень сильно (гораздо сильнее, чем обычные магниторезисторы) меняет свое сопротивление под воздействием магнитного поля, почему эффект и назван гигантским. За его открытие в 2007 году дали Нобелевскую премию по физике. Магниторезистор в головке чтения фактически является усилителем, на нем получается сигнал гораздо больше, чем на обычной магнитной головке. Обычая магнитная головка преобразует в сигнал энергию, генерируемую магнитным полем (фактически это механическая энергия движения магнитного носителя, принцип тот же, что в электрогенераторах, т.е. создается тормозящая вращение диска сила, правда, в данном случае очень небольшая, много меньше силы трения). В магниторезистивной головке магнитное поле только управляет сопротивлением, а выходной сигнал создается за счет энергии от источника питания. Это, за счет роста чувствительности, позволяет сделать дорожки более узкими.

Девятый способ - перпендикулярная запись. Обычная продольная запись информации приводит к тому, что участки разного направления намагниченности представляют собой магниты, обращенные друг к другу одноименными полюсами. Это вызывает их взаимное размагничивание и снижает плотность записи. Если же намагничивать участки перпендикулярно плоскости носителя, у получающихся магнитов рядом находятся разноименные полюса, что способствует усилению их магнитного поля.
Для такой записи требуется специальный носитель - у него под слоем магнитно-жесткого материала, в котором и делается запись, находится слой магнитно-мягкий, служащий для замыкания магнитного поля, и специальная головка записи, у которой разные полюса - рабочий узкий, а второй, для замыкания магнитного поля, во много раз шире (в зазоре у широкого полюса создается слабое магнитное поле, которое не может ничего перемагнитить и поэтому безопасно для участков записи, над которыми находится).
Устройство головки для перпендикулярной записи и ее отличие от обычной головки ясно из рисунка. Там же видно расположение GMR-сенсора, осуществляющего чтение. Рисунок условный - в действительности вся конструкция (включая обмотку) единая, созданная по тонкопленочной технологии.


См. также http://www.oszone.net/3482_2/ и (английский язык) https://en.wikipedia.org/wiki/Perpendicular_recording

Десятый способ - разбивка диска на зоны. Ограничивающим фактором является продольная плотность записи в битах на миллиметр, поэтому, если на всем диске писать с одинаковой скоростью (в мегабитах в секунду), только на самой внутренней дорожке можно использовать полную плотность записи. При этом оптимальный радиус внутренней дорожки равен половине радиуса внешней дорожки (если сделать меньше, будут потери от снижения плотности записи, если больше - потери от снижения числа дорожек). Поэтому диск разбивают на несколько зон, в каждой из них своя скорость записи (чем дальше от центра диска, тем больше), так, чтобы в каждой зоне плотность записи была близка к максимальной. Это дает выигрыш в емкости диска около полутора раз.

Все это, в совокупности с общим прогрессом в технологиях, и привело к тому, что за 60 лет вес диска уменьшился более чем в 1000 раз (было почти тонна, стало меньше килограмма), цена также более чем в 1000 раз в сопоставимых ценах (было более 250 тыс долл в нынешних ценах, теперь примерно за 250 долл можно купить диск на 8 терабайт), при росте емкости в 2-3 миллиона раз (реально продаются диски на 10 терабайт, обещают 16 терабайт).

Методы повышения надежности магнитных носителей.

Сбой при чтении с магнитного носителя - явление рядовое. К счастью, в подавляющем большинстве случаев удается исправить ситуацию.
Этой проблеме приходится уделять много внимания.

Выявление сбоя при чтении обеспечивается наличием контрольной информации. Раньше широко применялся контроль по четности, а в наше время исключительно циклические контрольные коды.

Если произошел сбой при чтении, почти всегда удается исправить ситуацию повторным чтением. При этом может удалиться прилипшая к магнитной ленте соринка, давшая сбой. Но в основном успешность повторного чтения определяется более удачным сочетанием случайных факторов (соотношение по времени между считанными импульсами и тактовыми импульсами, шумы, расстояние между головкой и поверхностью, которое не строго постоянно и т.д.) Обычно пытаются читать десятки раз (и не так уж редко с десятого или сорокового раза читается успешно), и только если не удалось прочесть за много попыток, данные считаются нечитаемыми.

Еще один метод, широко используемый - коды с исправлением ошибок.
Для упомянутой выше 9-дорожечной ленты IBM применялся следующий метод. В ней имеется девятый бит (контроль по нечетности) для каждого записываемого байта (одновременно записываются на 9 дорожек 8 информационных бит и 1 контрольный), а после окончания блока данных на каждой дорожке пишется код продольного контроля.
Если по битам контроля по нечетности и кодам продольного контроля обнаруживается ошибка, и при этом код продольного контроля показывает ошибку только на одной дорожке, данные для этой дорожки восстанавливаются из информации по остальным восьми дорожкам - они должны быть такими, чтобы число единиц во всех 9 дорожках было нечетным.

В наше время на магнитных дисках используются коды с исправлением ошибок Рида-Соломона https://ru.wikipedia.org/wiki/Код_Рида_-_Соломона Эти коды позволяют исправлять целые группы ошибок.

Также широко используется обход дефектных участков носителя. На лентах это реализуется увеличением промежутка между блоками, если блок попал на дефектный участок. На дисках создаются резервные сектора, которыми подменяются неисправные.

RAID-массив (аббревиатура RAID - Redundant Array of Independent Disks, избыточный массив из независимых дисков). Используется несколько дисков, при этом обеспечивается защита от пропадания информации. Варианты могут быть разные - от дублирования (пишем на два диска, читаем с одного, если не читается - читаем со второго) до распределения информации и контрольных данных по нескольким дискам так, чтобы при отказе одного диска всю информацию можно было восстановить с использованием того, что на остальных дисках (RAID 3 и 4 - дисковые массивы с чередованием и выделенным диском четности).
https://ru.wikipedia.org/wiki/RAID

S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology, технология самоконтроля, анализа и отчетов) - эта технология, реализуемая находящимся в жестком диске контроллером, анализируя такие факторы, как количество дефектных секторов и частота образования новых дефектных секторов, частота ошибок чтения (вызвавших повторное чтение), а также общее время работы, число перемещений головок и т.д., позволяет оценить степень износа диска и заранее предупредить о его возможном отказа, что позволяет вовремя заменить диск и избежать потери данных.

Современный магнитный диск включает в себя компьютер довольно большой производительности, с большим объемом памяти (до 256 мегабайт дисковый кэш, чтобы можно было принять данные для записи сразу, а записать когда головки будут в нужном месте, а при чтении реализовать, например, чтение впрок, прочитав и находящиеся непосредственно за запрашиваемым сектором данные, а потом, когда к ним обратятся, выдать их сразу), с быстрым микроконтроллером и спецвычислителем цифровой обработки данных. Микроконтроллер реализует многие функции диска, столь сложные, что их можно реализовать только программно.

Структура данных на диске.

На каждой дорожке имеется заголовок дорожки, содержащий информацию о дорожке. Остальная часть дорожки разбита на сектора. Ранее были популярны сектора переменной длины, в настоящее время они фиксированной длины, сформированы на заводе при разметке диска. Логический сектор - 512 байт (каждый из секторов можно писать и читать по отдельности), физический - обычно 4096 байт (т.е. чтобы записать один логический сектор, диск читает все 4096 байт, подменяет в них нужные 512 байт записываемыми и опять пишет весь физический сектор). Каждый сектор состоит из заголовка сектора и собственно данных. В заголовке сектора хранится номер дорожки (это нужно, чтобы убедиться, что головка позиционировалась на нужную дорожку), номер сектора, другие служебные данные. Если сектор дефектный - в заголовке хранится номер замещающего сектора и контроллер диска, прочтя эту информацию, обращается к замещающему сектору. Чтобы избежать проблем в случае дефекта поверхности там, где расположен заголовок сектора, при дефектном секторе на его информационную часть (все равно неиспользуемую) записывают столько копий заголовка сектора, сколько поместится. Если хотя бы одна из них читается, перенаправление на замещающий сектор пройдет успешно.

компьютеры

Previous post Next post
Up