ТЕМНАЯ ЭНЕРГИЯ В БЛИЖНЕЙ ВСЕЛЕННОЙ

Aug 06, 2009 14:15


И.Д.Караченцев доктор физико-математических наук, профессор, А.Д.Чернин доктор физико-математических наук, профессор

10 лет назад стало известно, что все мировое пространство заполнено невидимой космической средой, получившей название «темная энергия». На нее приходится приблизительно 3/4 всей энергии (и массы) наблюдаемой Вселенной. Темная энергия создает всемирное антитяготение и заставляет галактики удаляться друг от друга с возрастающими скоростями. Впервые эффект антитяготения заметили на самых далеких космологических расстояниях, измеряемых миллиардами световых лет. Но темная энергия проявляет себя и на относительно малых расстояниях, неподалеку от нашей Галактики Млечный Путь - это показали наблюдения ближней Вселенной, которые ведутся с помощью космического телескопа «Хаббл

Четыре открытия

Космология - наука наблюдательная; она строится на основе надежных астрономических сведений о реальном мире. Четыре крупнейших наблюдательных открытия прошлого века определили лицо науки о Вселенной в первом десятилетии века ХХI.

Первое из этих открытий было сделано В.Слайфером и Э.Хабблом: в 1917-1929 гг. они обнаружили, что галактики не стоят на месте, а движутся, удаляясь от нас и друг от друга. Разбегание галактик наблюдается сейчас на всех пространственных масштабах - от близкой окрестности нашей Галактики и до границ видимой Вселенной. Это самый грандиозный по пространственному масштабу феномен природы. О нем говорят как об общем расширении Вселенной.

Возможность расширения Вселенной была предсказана теоретически А.А.Фридманом в 1922-1924 гг. В его космологической теории принимается, что распределение вещества во Вселенной однородно. Теория говорит, что в однородном расширяющемся мире наблюдаемые скорости удаления галактик должны быть прямо пропорциональны расстояниям до них. Эта зависимость действительно была найдена в 1929 г. в астрономических наблюдениях Хаббла (рис.2); ее называют законом Хаббла.

Второе из крупнейших открытий в космологии - обнаружение темной материи. Уже в 1932 г. Ф.Цвикки заметил признаки существования в природе невидимой субстанции, которая проявляет себя лишь своим тяготением. Но убедительные наблюдательные доказательства предоставили работы Я.Эйнасто, Дж.Острайкера, Дж.Пиблса, В.Рубин и других астрономов в середине 1970-х годов. Выяснилось, что темная материя образует невидимые гало, в которые погружены отдельные галактики, их группы и скопления. В этих астрономических системах темной материи в 5-6 раз больше по массе, чем «обычного» вещества. Обычное вещество, из которого состоят Земля (и все, что на ней), планеты, звезды и другие знакомые тела природы, - это протоны, нейтроны и электроны; за этой формой энергии/массы закрепилось название «барионы» (хотя электрон и не является тяжелой частицей).

Судя по всему, темная материя состоит не из барионов, а из не известных до сих пор элементарных частиц, которые - в отличие от протонов и нейтронов - не участвуют в сильном ядерном взаимодействии. Что это за частицы, еще предстоит выяснить в лабораторных и наблюдательных исследованиях. Частицы темной материи определенно должны быть нерелятивистскими и стабильными или по крайней мере долгоживущими. По последним данным, в общем балансе энергии/массы в наблюдаемой Вселенной на темную материю приходится приблизительно 20%, тогда как на барионы - около 4%, а на темную энергию (как уже упоминалось) - приблизительно 75%.

Рис.2. Оригинальная хаббловская диаграмма: зависимость скорости удаления галактики от расстояния до нее. Точками показаны данные для 24 индивидуальных галактик, кружками - средние данные для нескольких групп галактик; для тех и других проведены свои линии по методу наименьших квадратов отклонения. Видно, что скорости прямо пропорциональны расстояниям (закон Хаббла). Правда, расстояния у Хаббла были определены в 1929 г. с немалой систематической ошибкой: все они на самом деле в 8-10 (!) раз больше, чем на рисунке. Но после исправления ошибки (общей для всех галактик) закон пропорциональности скорости расстоянию остается в силе

Третье в хронологическом порядке крупнейшее открытие в космологии - регистрация реликтового излучения, равномерно заполняющего все пространство мира. Это было сделано в 1965 г. А.Пензиасом и Р.Вилсоном (Нобелевская премия 1978 г.). Реликтовое («остаточное») излучение представляет собой газ фотонов, сохранившихся во Вселенной с тех далеких времен, когда все ее вещество было очень плотным и горячим. Существование такого излучения было предсказано в 1940-1950-х годах - это заслуга Г.А.Гамова, некогда студента профессора Фридмана в Петербургском (тогда Ленинградском) университете. На реликтовое излучение приходится несколько сотых долей процента от полной энергии/массы Вселенной в ее современном состоянии.

Наконец, четвертое и самое свежее событие в космологии произошло в 1998-1999 гг.: это открытие темной энергии и всемирного антитяготения. Оно было сделано двумя большими группами астрономов, одной из которых руководил Б.Шмидт, а другой - С.Перлматтер. В их наблюдениях изучались вспышки далеких сверхновых звезд. По данным о видимой яркости этих объектов и о расстоянии до них (точнее, о соответствующем красном смещении) можно изучать движение галактик, в которых происходят эти вспышки. Сверхновые в максимуме их блеска столь ярки, что могут быть зарегистрированы на очень больших, по настоящему космологических расстояниях. Речь идет о расстояниях в миллиарды световых лет, сравнимых с расстоянием до границ видимой Вселенной; на этих пространственных масштабах Вселенная определенно является однородной и изотропной, как это и предполагается в теории Фридмана. В наблюдениях использовались самые мощные современные астрономические инструменты - в первую очередь космический телескоп «Хаббл», а также и крупнейшие наземные рефлекторы. Это позволило обнаружить и измерить тонкий релятивистский эффект, присутствующий в зависимости видимой яркости источника от расстояния (красного смещения). Данный эффект предсказывается теорией распространения света в расширяющейся Вселенной и - что интереснее всего - его величина определяется ускорением, с которым движется источник. Эффект становится доступным измерению только на очень больших расстояниях (где красное смещение приближается к единице). Таким путем была найдена величина ускорения и, прежде всего, установлен его знак: ускорение оказалось положительным. Значит, скорости разбегания удаляющихся галактик растут со временем. Отсюда немедленно следует вывод о том, что движением галактик управляет не их взаимное тяготение (как ранее считалось), а сила противоположного знака, антитяготение, которое сильнее тяготения в нынешнем состоянии Вселенной. Антитяготение создается не галактиками, а темной энергией, в которую погружены все тела природы. Подробнее об открытии антитяготения и темной энергии рассказано, например, в научно-популярной книге [1].

Здесь напомним только, что возможность космического антитяготения предвидел А.Эйнштейн. В 1915 г. им была создана общая теория относительности, составляющая основу основ современной космологии. Двумя годами позднее, в 1917 г., Эйнштейн выдвинул идею антитяготения как всеобщего космического отталкивания. Эта идея не вытекала сама по себе из новой теории пространства, времени и тяготения. Тем не менее она органично и в исключительно экономной математической форме была включена в структуру общей теории относительности, в ее базовые уравнения. Антитяготение было представлено в этих уравнениях всего одной и притом постоянной физической величиной, одним числом, которое получило название космологической постоянной. Ее обозначают обычно греческой буквой λ(лямбда).

Стандартная модель космологии

В итоге этих, а также и ряда других ценных наблюдательных и теоретических исследований разных лет в наши дни сформировалась новая связная и непротиворечивая картина мира, о которой говорят как о современной «стандартной модели» космологии. Стандартная модель следует эйнштейновской идее о космологической постоянной; в ней принимается, что космическое отталкивание создается темной энергией, равномерно заполняющей все мировое пространство.

Рис.3. Диаграмма скорость-расстояние для галактик Местной группы и хаббловского потока вокруг нее. Точки - данные наблюдений; горизонтальные и вертикальные черточки указывают ошибки измерений. Зеленая линия - средняя линия (линейная регрессия) для точек, представляющих галактики потока. Красная линия - наименьшая скорость, допустимая для галактик потока в нашей теоретической модели местных потоков; в реальном потоке это условие, как мы видим, выполняется. Пунктирная линия - зависимость скорость-расстояние для потока в модели без темной энергии; видно, что галактики потока не следуют этой зависимости, так что такая модель неверна. Антитяготение «перевешивает» тяготение на расстояниях, больших 1.3-1.5 Мпк

Макроскопические свойства темной энергии (т.е. ее свойства как сплошной среды) могут быть с большой полнотой описаны в духе идеи Эйнштейна. Главное из них состоит в том, что плотность темной энергии есть константа, прямо определяющаяся космологической постоянной λ: она всюду одинакова в пространстве и не меняется со временем (и притом в любой системе отсчета). По самым свежим наблюдательным данным, плотность темной энергии оценивается величиной (0.75±0.05)·10-29 г/см3. Чтобы перейти здесь от массы к энергии на единицу объема, достаточно - по знаменитой формуле Эйнштейна - умножить эту величину на квадрат скорости света. Возможно, эту величину удастся представить себе нагляднее, если измерять плотность не в граммах, а в единицах массы атома водорода (≈1·10-24 г); тогда окажется, что плотность темной энергии эквивалентна наличию примерно пяти атомов водорода в одном кубическом метре пространства.

Стандартная модель полностью согласуется со всем комплексом сегодняшних данных о Вселенной. Она выглядит при этом простой и естественной. Тем не менее в космологии активно обсуждаются также и иные, нестандартные модели, в которых рассматриваются неэйнштейновские варианты интерпретации темной энергии, причем предполагается, что ее плотность способна - в определенных пределах - изменяться во времени и, вообще говоря, в пространстве. Стоит заметить, что с каждым годом эти пределы (10 лет назад еще довольно широкие) систематически сужаются по мере накопления все более точных наблюдательных данных. Говоря далее о темной энергии, мы будем всегда следовать стандартной модели.

С точки зрения теории, у темной энергии как среды с постоянной плотностью имеется одна исключительно привлекательная черта. Как было показано Э.Б.Глинером в 1965 г., среда, описываемая космологической постоянной, является вакуумом по своим механическим свойствам. Вакуум в механике определяется как среда, которая не может служить системой отсчета: движение и покой относительно вакуума неразличимы. Если, например, имеется два тела, движущиеся друг относительно друга, то вакуум покоится относительно их обоих. Этому свойству тривиальным образом удовлетворяет пустота, т.е. полное отсутствие какой-либо энергии/массы в пространстве. Но и при плотности, отличной от нуля, среда будет вакуумом, если ее плотность - как в случае темной энергии - одна и таже в любой системе отсчета.

Давно, еще с конца 1920-х годов, известно, что вакуум с отличной от нуля плотностью определенно должен присутствовать в природе - этого требует квантовая теория; первым об этом четко сказал П.Дирак. Физический вакуум представляет собой наинизшее энергетическое состояние квантовых полей и частиц. Не тождествен ли эйнштейновский космологический вакуум физическому вакууму? Такой вопрос поставил в 1967 г. Я.Б.Зельдович. Если два вакуума тождественны, в фундаментальной теории достигается важное объединение: число базовых «сущностей» сокращается, а это главное направление развития естествознания. Тогда о темной энергии можно было бы сказать, что ее физическая природа обязана фундаментальным квантовым свойствам полей и частиц.

За 40 лет поисков и усилий идею Зельдовича не удалось ни доказать, ни опровергнуть. Тем не менее она до сих пор остается самой привлекательной и многообещающей в теоретической физике. Недавно С.Вайнберг (лауреат Нобелевской премии 1979 г. за работы по теории объединения электромагнитного и слабого взаимодействий)предложил такой ответ на вопрос Зельдовича: да, темная энергия постоянной плотности несомненно присутствует в природе как вакуум квантовых полей и частиц; остается выяснить, почему плотность физического вакуума равна измеренной в наблюдениях плотности темной энергии.

Судя по всему, теоретическая физика не очень скоро даст такое объяснение. А пока физическая природа темной энергии и ее микроскопическая структура (т.е. «состав материала», из которого она сделана) остаются полной загадкой. Вайнберг и многие другие считают, что это самая острая проблема всей современной фундаментальной науки.

Закон всемирного антитяготения

Почему темная энергия создает не тяготение, а антитяготение? На этот вопрос дает ответ общая теория относительности.

Все дело в том, что темная энергия как сплошная среда обладает не только определенной плотностью, но также и давлением. Так она с самого начала задана и описана космологической постоянной. При этом если ее плотность положительна, то ее давление отрицательно.

Диаграмма скорость-расстояние для галактик этой группы и хаббловского потока вокруг нее (справа). Группа крупнее Местной группы: ее радиус составляет ~ 2 Мпк. За границами группы преобладает антитяготение. Обозначения те же

Отрицательное давление - не вполне обычное явление в физике. При «нормальных условиях» давление в «нормальной» жидкости или газе, как правило, положительно. Но и в жидкости (например, в потоках воды за винтом парохода), и в твердых телах (например, во всесторонне растянутой стальной болванке) отрицательное давление тоже может возникать. Это требует особых, специальных условий, но само по себе не является чем-то исключительным. Однако в случае вакуума ситуация совсем особая. Давление вакуума не только отрицательно, оно к тому же равно - по абсолютной величине - его плотности энергии (напомним, что эти две физические величины имеют одинаковую размерность). Получается, что у вакуума давление есть минус плотность энергии. Ничего подобного нет ни у одной другой среды. Это свойство одного вакуума и только его. И именно такое соотношение между плотностью и давлением совместимо с понятием вакуума как формы энергии с всюду и всегда постоянной плотностью, независимо от системы отсчета.

Согласно общей теории относительности, тяготение порождается не только плотностью среды, но и ее давлением. При этом «эффективная» плотность энергии, создающая тяготение, складывается из суммы двух слагаемых: плотности энергии и утроенного давления. Но при той связи между давлением и плотностью энергии вакуума, о которой мы только что сказали, эта сумма равна двум величинам давления и поэтому оказывается отрицательной. Отсюда и антитяготение вакуума: отрицательная эффективная плотность создает «отрицательное» тяготение.

Любопытно, что описанная здесь (словами) формула для эффективной гравитирующей плотности энергии отражает то свойство реального мира, что время в нем одномерно, а пространство - трехмерно. Одномерность времени дает множитель 1 перед плотностью энергии, а трехмерность пространства - множитель 3 перед давлением. Если бы пространство было, например, одномерным, как время, в нем вакуум не вызывал бы вообще никакой силы - ни антитяготения, ни тяготения. В общем случае в пространствах с числом измерений N вакуум создает антитяготение, если N > 2.

Еще Кант обратил внимание на то, что закон всемирного тяготения Ньютона отражает факт трехмерности пространства. По Ньютону, сила притяжения между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. В общем случае пространства с N измерениями сила тяготения обратно пропорциональна расстоянию в степени N - 1. Отсюда обратный квадрат в законе Ньютона для нашего трехмерного мира. А, например, в одномерном пространстве сила тяготения вообще не зависит от расстояния.

Эйнштейновская сила антитяготения (если говорить об этом на ньютоновом языке сил) прямо пропорциональна эффективной гравитирующей плотности. Что же касается ее зависимости от расстояния, эта сила не падает, а растет с расстоянием: она прямо пропорциональна расстоянию между телами. Дело здесь в том, что приудалении тел друг от друга полная энергия вакуума, заключенная в пространстве между этими телами, возрастает. Закон прямой пропорциональности расстоянию справедлив для антитяготения в пространствах любого числа измерений (кроме N = 1, где антитяготение, как мы уже сказали, вообще отсутствует).

Приведем наглядный количественный пример. Пусть два атома водорода помещены в пространство (обычное трехмерное), в котором нет ничего, кроме темной энергии с ее измеренной в наблюдениях плотностью. На атомы действуют две силы: ньютонова сила их взаимного притяжения друг к другу и сила антитяготения, создаваемая темной энергией в пространстве между ними. Оказывается, что антитяготение сильнее тяготения, если расстояние между атомами больше, чем полметра.

Прошлое и будущее мира

Обратимся к истории Вселенной, к ее прошлому. Согласно стандартной модели космологии, темная энергия доминирует в наблюдаемом мире. Но так было не всегда. Ее плотность не меняется со временем, тогда как плотность темной материи, барионов и излучения падает при расширении мира. Значит, плотности этих трех гравитирующих энергий растут, если смотреть назад по времени. Поэтому в отдаленном прошлом антитяготение темной энергии было несущественно: в ранней Вселенной господствовало всемирное тяготение темной материи, барионов и излучения. Тяготение замедляло космологическое расширение, толчком к которому был Большой Взрыв, в течение первых примерно 7 млрд лет существования Вселенной. Затем наступил баланс тяготения и антитяготения: в какой то момент сумма этих двух сил обратилась в нуль во всем пространстве, где происходит разбегание галактик. Вслед затем наступила современная эпоха преобладания антитяготения, в которую космологическое расширение происходит с ускорением. С ее начала и до сих пор прошло еще около 7 млрд лет. Так что современный возраст Вселенной составляет примерно 14 млрд лет, миг баланса тяготения и антитяготения делит ее историю на две приблизительно равные по длительности эпохи.

Но как проверить, что в ранней Вселенной космологическое расширение происходило не с ускорением, как сейчас, а с торможением? Это можно сделать с помощью точных измерений ускорения по наблюдениям сверхновых звезд. Нужно только найти сверхновые, находящиеся от нас на расстоянии в 7 млрд св. лет и более. Замечательно, что такие примеры очень далеких сверхновых были действительно найдены и они определенно подтверждают: в далеком прошлом космологическое расширение и в самом деле происходило с замедлением. Эти примеры служат еще одним прямым доводом в пользу новейшей картины эволюции Вселенной.


Диаграмма скорость-расстояние для галактик группы М 81 и хаббловского потока вокруг нее (справа). Картина очень похожа на ситуацию в Местной группе. Только ошибки измерения расстояний здесь заметно выше - из-за сравнительно большой удаленности группы

Посмотрим теперь вперед, в будущее мира. Раз наблюдаемое расширение Вселенной происходит с ускорением, оно будет продолжаться неограниченно долго - ничто уже не способно этому помешать. Действительно, средняя плотность темной материи, барионов и излучения будет только убывать при дальнейшем расширении мира. Но это означает, что создаваемое ими тяготение никогда уже не будет снова преобладать во Вселенной. Динамическое доминирование темной энергии и антитяготения может только усиливаться, а разбегание галактик будет происходить все быстрее и быстрее. Рано или поздно собственным тяготением галактик друг к другу можно будет вообще пренебречь, и тогда они станут двигаться как пассивные «пробные частицы» на постоянном во времени и пространстве фоне темной энергии. Но по своему внутреннему устройству галактики, их группы и скопления при этом останутся квазистационарными гравитационно связанными изолированными объектами - в них тяготение всегда было и будет сильнее антитяготения. Таково состояние, к которому стремится Вселенная в ходе своей эволюции.

капли науки и не только

Previous post Next post
Up