Я кладу на стол 8 пуговиц. Не дожидаясь моих указаний, мальчики вместе кидаются их считать. Видимо, несмотря на юный возраст, некоторое представление о том, что такое математика, у них уже есть: математика - это когда считают. Когда шум утих, я могу сформулировать собственно задачу:
- А теперь положите на стол столько же монет.
Теперь на столе оказывается ещё 8 монет. Мы кладём монеты и пуговицы в два одинаковых ряда, друг напротив друга.
- Чего больше, монет или пуговиц? - спрашиваю я.
Дети смотрят на меня несколько недоумённо; им не сразу удаётся сформулировать ответ:
- Никого не больше.
- Значит, поровну, - говорю я. - А теперь смотрите, что я сделаю.
И я раздвигаю ряд монет так, чтобы он стал длиннее.
- А теперь чего больше?
- Монет, монет больше! - хором кричат ребята.
Я предлагаю Пете сосчитать пуговицы. Хоть мы их уже считали четыре раза, Петя ничуть не удивляется моему заданию и подсчитывает количество пуговиц в пятый раз:
- Восемь.
Предлагаю Диме сосчитать монеты. Дима считает и говорит:
- Тоже восемь.
- Тоже восемь? - подчёркиваю я голосом. - Значит, их поровну?
- Нет, монет больше! - решительно заявляют мальчики.
По правде говоря, я заранее знал, что ответ будет именно таким. Эта задача - только одна из бесчисленных серий задач, которые давал в своих экспериментах детям-испытуемым великий швейцарский психолог Жан Пиаже (о «феноменах Пиаже» немного рассказывается в следующем разделе). В своих опытах он установил: маленькие дети не понимают того, что нам с вами кажется самоочевидным - если несколько предметов как-нибудь переставить или переместить, то их количество от этого не изменится. Итак, я знал заранее, что скажут дети. Знал, но почему-то не приготовил никакой разумной реакции. А как поступили бы вы, читатель? Что бы вы сказали детям?
К сожалению, самый распространённый приём, которым пользуются в такой ситуации почти все взрослые, состоит в том, чтобы начать детям изо всех сил что-то втолковывать. «Ну как же так! - с наигранным удивлением говорит взрослый. - Откуда же их могло стать больше? Ведь мы же никаких новых монет не добавляли! Ведь мы их только раздвинули - и всё. Ведь раньше же их было поровну - вы же сами говорили! Значит, их никак не могло стать больше. Конечно же (выделяем голосом), монет и пуговиц осталось поровну!»
Старания напрасны - такая педагогика никуда не ведёт. Точнее, ведёт в тупик. Во-первых, не надейтесь, что ваша логика в чём-нибудь убедит ребёнка. Логические структуры он усвоит ещё позже, чем закон сохранения количества предметов. Пока этого не произойдёт, логические рассуждения не покажутся ему убедительными. Убедительной является только интонация вашего голоса. А она покажет ребёнку лишь то, что он опять оказался не на высоте и что-то сделал не так. Дети сдаются не сразу, их здравый смысл не так-то легко сломить. Но если насесть как следует, можно добиться того, что они перестанут опираться на собственный ум и наблюдательность, а будут пытаться угадать, чего желает от них взрослый. Взрослые вообще предъявляют детям множество необъяснимых требований: почему-то нельзя рисовать на стене; почему-то надо идти ложиться спать, когда игра в самом разгаре; почему-то нельзя спрашивать: «А когда этот дядя уйдёт?». Вот и сейчас происходит что-то аналогичное: хотя я прекрасно вижу, что монет больше, чем пуговиц, но почему-то полагается отвечать, что их поровну. Отношение к математике как к некоему ритуалу, в котором нужно произносить определённые заклинания в определённом порядке, зарождается в школе и прекрасно доживает до университета, где его можно встретить даже у студентов-математиков.
Так что же всё-таки делать? Вообще не задавать подобных вопросов, что ли, если уж нельзя прокомментировать ответ?
Напротив, задавать вопросы как раз нужно. Очень полезно также обменяться мнениями: «А ты, Женя, как думаешь? А ты, Петя? А почему? А насколько монет стало больше?» Можно даже наравне с остальными высказать и свою точку зрения, но очень осторожно и ненавязчиво, снабдив всяческими оговорками типа «мне кажется» и «может быть». Иными словами, весь свой авторитет взрослого нужно употребить не на то, чтобы закрепить за этим авторитетом абсолютную власть единственно правильного суждения, а на то, чтобы убедить ребёнка в важности и ценности его собственных поисков и усилий. Но ещё интереснее натолкнуть его на противоречия в его собственной точке зрения.
- А сколько монет надо забрать, чтобы снова стало поровну?
- Две монеты надо забрать.
Забираем две монеты; считаем: пуговиц восемь, а монет шесть.
- А теперь чего больше?
- Теперь поровну.
Очень хорошо. Я снова раздвигаю монеты пошире и задаю тот же вопрос. Теперь уже оказывается, что шесть монет - это больше, чем восемь пуговиц.
- А почему их стало больше?
- Потому что вы их раздвинули. В этот момент вдруг завязывается яростный спор. Одни мальчики по-прежнему считают, что монет больше, другие вдруг «увидели», что больше пуговиц. Пожалуй, самое время прерваться и перейти к другой задаче; пусть дальше думают сами.
Я был среди тех, кто говорил, что монет все равно больше. В первый раз я просто согласился со всеми остальными, а потом просто говорил не думая. Все предыдущие разы так было правильно (т. е. папа с этим соглашался), поэтому у меня не было причины менять мнение и в последний раз - Дима
Все эти мысли и идеи пришли ко мне далеко не сразу, так что в своём рассказе я забежал вперёд - и в будущие свои размышления, и в будущие занятия. Эта задача ещё многократно возникала у нас в разных обличьях. Было у нас, например, две армии, которые никак не могли победить друг друга, потому что у них было поровну солдат. Тогда одна из них раздвинулась, солдат у неё стало больше, и она начала побеждать. Увидев это, вторая армия раздвинулась ещё шире и т. д. (Закончить историю можно в соответствии с собственной фантазией.) Ещё был Буратино, которого Лиса Алиса и Кот Базилио пытались обмануть, раздвигая пять золотых монет и утверждая, что их стало больше.
Я научился не ждать лёгких побед. Всё равно раньше чем через два - три года дети не усвоят закон сохранения количества предметов, как бы вы их ни учили. Да самое главное, это вовсе и не нужно! Я уверен: от этих скороспелых знаний пользы ровно столько же, сколько от преждевременных родов. Всему своё время, и не следует опережать события, в том числе и в области воспитания интеллекта. (Признаю, что эта точка зрения высказана здесь в несколько демагогической форме. Но аргументы в её пользу - а их немало - будут обильно рассыпаны по дальнейшему тексту.) Однако, повторяю, все эти мысли были потом. А тогда, на первом занятии, какое-то интуитивное озарение удержало меня от «объяснений», и я просто перешёл к следующей задаче.