Дай пять: как математика...

Jul 22, 2016 11:12



«Что может быть любопытнее того, что рука человека, лапа крота, нога лошади, ласт дельфина и крыло летучей мыши построены по тому же самому образцу?» - писал Чарльз Дарвин в «Происхождении видов». Вопрос о том, как формируются конечности позвоночных, давно интересовал ученых. С развитием методов эмбриологии стало больше известно о том, как формируется зачаток конечности [1], но до конца не было ясно, какие механизмы управляют развитием пальцев. Анализируя экспрессию генов и используя математическое моделирование, группа ученых под руководством Джеймса Шарпа из Центра геномной регуляции в Барселоне выяснила, какие молекулы являются главными участниками в процессе формирования пальцев [2].

Математика развития

Каким образом взаимодействие нескольких молекул может привести к созданию таких сложных структур, как, например, наши пальцы? Над этим вопросом задумывались не только биологи, но и математики. В 1952 году Алан Тьюринг, английский математик, известный своими работами в области криптографии и информатики, опубликовал работу под названием «Химические основы морфогенеза» [3]. (О сложной судьбе этого гениального человека повествует фильм «Имитационная игра», который выйдет на экраны осенью 2014 г.) Тьюринг заметил, что многое в природе можно описать с помощью математики, в частности возникновение и развитие органов - морфогенез. В своей работе он привел математическую модель, в которой два вещества (морфогена) могут создавать разнообразные сложные структуры путем самоорганизации. Морфогенами являются различные молекулы, вырабатывающиеся в развивающемся организме, которые способны воздействовать на окружающие клетки и определять их дальнейшее развитие.

В основе модели Тьюринга лежит реакционно-диффузионный механизм, который заключается в следующем. Два вещества распространяются в тканях с разной скоростью и взаимодействуют друг с другом. Первое вещество является активатором. Оно усиливает собственное производство, а также активирует второе вещество - ингибитор. Ингибитор в свою очередь подавляет активность первого вещества (). Совместно они могут организовывать сложные узоры из полос и пятен, часто встречающиеся в живой природе.

Схематическое представление реакционно-диффузионной модели Тьюринга. Два морфогена - активатор и ингибитор - взаимодействуют между собой, создавая самоорганизующиеся паттерны [4]. (Попробовать создать такие узоры можно на сайте http://www.cgjennings.ca/toybox/turingmorph.)

Пятна на шкуре гепарда, полосы у зебры и причудливые рисунки на раковинах моллюсков возникают за счет механизмов, описанных Аланом Тьюрингом [4, 5] (). Несмотря на то, что рисунок окраски каждого животного индивидуален, тип распределения пятен и полос имеет общие закономерности, которые задаются параметрами модели Тьюринга. Такими параметрами могут быть скорость диффузии молекул, геометрия и размер ткани. Но самое сложное состоит в том, чтобы понять, какие молекулы участвуют в создании таких паттернов, будь то рисунок на шкуре или распределение молекул в зачатках пальцев. Формирование пятен на шкуре гепарда и полос зебры описывается с помощью одной математической модели.

Трио Тьюринга

В 1979 году Стюарт Ньюман и Гарри Фриш впервые высказали идею, что реакционно-диффузионный механизм может участвовать в формировании пальцев у позвоночных [6]. Но до настоящего момента не было известно, какие именно молекулы являются морфогенами Тьюринга. Исследование, выполненное командой из биологов и математиков под руководством Джеймса Шарпа, позволило найти эти загадочные вещества и доказать, что модель, предложенная Тьюрингом, действительно управляет развитием наших пальцев [2].

Ученые знали, что морфогены из модели Тьюринга должны формировать полосатый «узор» - они должны быть активны либо в зонах, которые станут пальцами, либо между ними. Транскрипционный фактор Sox9 оказался главным кандидатом на роль такого морфогена. Он играет роль в процессах формирования скелета и контролирует активность многих генов, участвующих в эмбриогенезе. Уже на ранних стадиях развития конечности, Sox9 создает паттерн из пяти полос в области, где будут формироваться пальцы. Чтобы найти других участников процесса, биологи сравнили транскриптом клеток зачатка конечности мыши, в которых ген Sox9 активен или не активен. Они нашли две другие группы генов - Bmp и Wnt, которые также формируют полосы. Bmp и Wnt представляют собой две группы белков - важных участников морфогенеза. Ранее было показано, что сигнальные пути с участием этих молекул играют роль в процессе регенерации конечностей [7].

В результате экспериментов испанские ученые выяснили, что в процессе формирования пальцев участвуют три морфогена - Sox9, Bmp и Wnt (). Экспрессирующийся в зачатке конечности Bmp активирует транскрипционный фактор Sox9 в зонах, где будут формироваться хрящевые зачатки костей пальцев. Wnt ингибирует Sox9 в промежутках между будущими пальцами, которые впоследствии разрушатся. Выявив эти связи, ученые рассмотрели различные схемы взаимодействия трех молекул и выбрали ту из них, которая лучше всего могла смоделировать периодический паттерн морфогенов.

Модель Тьюринга, описывающая формирование пальцев, состоит из трех компонентов: Wnt и Bmp-сигналинга и транскрипционного фактора Sox9. Wnt (синий) ингибирует экспрессию Sox9 (красный) между будущими пальцами, в то время как Bmp (зеленый) активирует Sox9 в мезенхимальных клетках, которые сформируют зачатки пальцев [8].



Модель развития пальцев

Построив схему взаимодействия трех морфогенов, ученые смогли смоделировать рост конечности согласно реакционно-диффузионному механизму, описанному Тьюрингом. В своей модели они также учли влияние фактора роста фибробластов (FGF) и транскрипционного фактора Hoxd13, которые участвуют в формировании пальцев. FGF образует градиент в зачатке конечности, концентрируясь на кончиках будущих пальцев и увеличивая расстояние между зонами экспрессии Wnt и Sox9. Это объясняет то, почему наши пальцы немного расходятся, а не расположены параллельно друг другу. Hox-гены (в частности Hoxa13 и Hoxd11-13) считаются важными регуляторами процесса формирования пальцев. При их отключении число пальцев может увеличиваться [9, 10]. Собрав все элементы компьютерной модели воедино, ученые показали, что Sox9, Bmp и Wnt могут организовывать паттерн из полос, размечая зоны формирования пальцев.

Компьютерное моделирование формирования пальцев на основе модели взаимодействия Bmp, Wnt и Sox9. A) Sox9 (красный) формирует случайно ориентированные полосы, когда в моделировании не учитываются другие факторы. B) Добавление в модель влияния Hoxd13 приводит к тому, что Sox9 формирует четкие параллельные полосы, но при этом также возникает ветвление пальцев (отмечено стрелкой). С) Под влиянием FGF формируются радиально идущие полосы Sox9. D-E) Совместное влияние FGF и Hoxd13 на систему Sox9-Bmp-Wnt приводит к появлению пяти полос Sox9, соответствующих зонам будущих пальцев [2].



Что произойдет, если по отдельности убрать каждый из участников процесса? Моделирование показало, что при удалении Bmp из системы Sox9 не будет активен, и пальцы не будут формироваться. Если отключить Wnt, Sox9 будет активен везде, и промежутков между пальцами не появится. Если же одновременно убрать Bmp и Wnt, то Sox9 будет формировать полосы, но их число уменьшится. Чтобы проверить полученные предсказания, биологи поставили эксперименты на изолированных зачатках конечности мыши. Для этого они использовали вещества, блокирующие сигнальные пути Bmp и Wnt. Во всех случаях экспериментальные данные сходились с предсказаниями, полученными с помощью моделирования (). Таким образом, ученые доказали, что совместная работа трех найденных морфогенов Тьюринга приводит к формированию пяти пальцев.

Компьютерное моделирование и результаты экспериментов на тканях зачатка конечности, полученные при удалении каждого из морфогенов. A) Смоделированные паттерны Sox9, образующиеся при поочередном удалении из системы Bmp и Wnt. B) Ингибирование Bmp и Wnt в тканях зачатка конечности приводит к изменению паттерна Sox9, соответствующего предсказаниям модели. С) Совместное ингибирование Bmp и Wnt приводит к уменьшению числа полос Sox9 [2].



Почему у нас пять пальцев?

Но возникает вопрос: почему у нас формируется именно пять пальцев, а не четыре, как, например, у Барта Симпсона? Если посмотреть на животный мир вокруг нас, то мы увидим, что число пальцев всегда равно пяти. Конечно, у лошади развит один палец, но в эмбриональном развитии у нее, так же как и у других животных, формируются все пять. Пандам, наоборот, потребовался еще один палец: в качестве него они используют кость запястья, которая помогает хватать бамбук. Почему же в эволюции закрепилось именно пять пальцев? Потому что общий предок всех млекопитающих, птиц, рептилий и амфибий имел пять пальцев.

Точно не известно, когда и у кого впервые появилось пять пальцев. Некоторые древние земноводные часто имели не пять, а шесть, семь или даже восемь пальцев. Например, акантостега, жившая около 360 миллионов лет назад, имела восемь пальцев на передних конечностях (). Но нашему общему пятипалому предку повезло больше, чем акантостеге - он выжил.

Акантостега - одно из первых позвоночных животных, у которых появились конечности. Они не были приспособлены для передвижения по суше и имели по восемь пальцев.

Описанная в данной статье работа о морфогенах Тьюринга, а также предыдущие исследования о влиянии Hox-генов на развитие пальцев позволяют предположить, что оба этих механизма совместно обеспечивают формирование пяти пальцев. Таким образом, число пальцев зависит от физических закономерностей, описывающихся моделью Тьюринга: скорости, с которой молекулы-морфогены распространяются по ткани, силе их взаимодействия и скорости роста зачатка конечности. Если молекулы будут диффундировать быстрее, промежуток между пальцами будет увеличиваться, поэтому пальцев станет меньше. Если зачаток конечности станет больше на 20%, а все остальное останется прежним, неожиданно появится место для еще одного пальца. Такие случаи часто встречаются среди животных и людей и известны как полидактилия. Настроив древние механизмы развития пальцев на нужную волну, наш предок обеспечил всему человечеству счастливую жизнь с пятью пальцами, а также существование десятичной системы счисления, которая стала основой нашей математики.

Литература

биомолекула: «Уточнен механизм, по которому развиваются конечности у куриного эмбриона»;
Raspopovic J., Marcon L., Russo L., Sharpe J. (2014). Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345, 566-570;
Turing A.M. (1952). The Chemical Basis of Morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37-72;
Kondo S., Miura T. (2010). Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science 329, 1616-1620;
Марри Д.Д. Отчего у леопарда пятна на шкуре;
Newman S., Frisch H. (1979). Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662-668;
Элементы: «Разгадан механизм регенерации конечностей»;
Zuniga A., Zeller R. (2014). In Turing’s hands-the making of digits. Science 345, 516-517;
Sheth R., Marcon L., Bastida M.F., Junco M., Quintana L., Dahn R., Kmita M., Sharpe J., Ros M.A. (2012). Hox Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism. Science 338, 1476-1480;
Элементы: «Идеи Алана Тьюринга помогли понять механизм развития пальцев у позвоночных».
Previous post Next post
Up