Главное преимущество нейросетей заключается в том, что они позволяют достигать очень высоких уровней абстракции, вычленяя из изображений их, как бы сказать… чисто абстрактные черты. Например, если нейросеть обучена распознаванию котиков, то в ее первый слой просто загружается изображение, а последующие слои обрабатывают его примерно так: второй распознает контрастность пикселей, третий наличие линий, четвертый их ориентацию, пятый мохнатость, шестой «ушастость», а седьмой и последний - «кóтовость». Важно понимать, что это очень условное представление о нейросетях - никто их заранее не программирует и не знает, что и как распознает данный слой. Как раз наоборот: все это происходит само собой по мере обучения. Суть аналогии в том, что уровень абстрактности очень сильно растет по мере движения от нижних к верхним слоям.
Тот случай, когда нейросеть пытается увидеть «собаковость».
Эта демонстрация приближает нас к созданию неспецифического (сильного) искусственного интеллекта, и даёт нам возможность подготовиться к нему. Мы получили очень узкую «заводь смыслов Го», специфическое и сверхэффективное расширение человечества как среды распространения идей. Ближайший вызов - научиться сосуществовать с ним. Мы должны это сделать, потому что нам придётся учиться сосуществовать с гораздо более широкими «заводями», принимающими за нас решения о лечении болезней (IBM Watson уже это делает), о путях доставки грузов и движении транспорта, о выборе образовательных программ…