Зачем нужен ЦЕРН

Jun 15, 2014 18:10

Как Стандартная модель физики частиц сблизила людей



Туннель Большого адронного коллайдера

Фото: Denis Balibouse / Reuters

Организация экономического сотрудничества и развития (ОЭСР) представила предварительную версию доклада, в котором положительно оценила экономические и социальные последствия воздействия исследовательских инфраструктур Большого адронного коллайдера (БАК) в Европейской организации по ядерным исследованиям (ЦЕРНе). «Лента.ру» решила выяснить, за что ОЭСР похвалила ученых ЦЕРНа, а вместе с этим рассказать об открытиях европейских физиков в области элементарных частиц и интернета.

Прообраз ОЭСР основан в 1948 году для независимого анализа проектов экономической и социальной реабилитации послевоенной Европы в рамках плана Маршалла. В настоящее время в организацию входят 34 государства, на которых приходится около 60 процентов мирового ВВП. Среди основных участников - США, Япония, страны Западной Европы, Австралия, Чили, Мексика и другие. Из стран БРИКС Бразилия, Индия, Китай и Южно-Африканская Республика активно сотрудничают с организацией, а с Россией ОЭСР 13 марта 2014 года приостановила сотрудничество.

Кроме фундаментальных и сопутствующих им прикладных исследований в ЦЕРНе Тим Бернерс-Ли с коллегами изобрели вместе с созданием идентификаторов URI (в том числе протокола http) и языка гипертекста HTML технологию всемирной паутины World Wide Web. В 1991 году Бернерс-Ли впервые ввел в работу веб-сервер, сайт и браузер WorldWideWeb.

Работа ученых из ЦЕРНа является иллюстрацией общей ситуации, как фундаментальная наука способствует прогрессу прикладных технологий и всего общества в целом, а ее результаты дают ответ на вопрос о целесообразности подобных исследований.

Соглашение о создании ЦЕРНа было подписано в Париже в 1953 году представителями 12 европейских стран. Сегодня число стран - участников проекта равняется 20, общее количество сотрудников равно примерно 2,5 тысячам человек, дополнительно в ЦЕРНе трудятся около восьми тысяч физиков из 85 стран мира. Россия в ЦЕРНе имеет статус наблюдателя.
Магниты и адронная терапия



Эксперты из ОЭСР особое внимание уделили двум проектам ЦЕРНа: созданию сверхпроводящих магнитов и адронной терапии для лечения раковых опухолей. По мнению экспертов, наработанные в ЦЕРНе технологии по созданию, монтажу и эксплуатации сверхпроводящих магнитов в скором времени найдут широкое применение в массовой промышленности.



Установка для ускорения ионов низких энергий

Фото: CERN

Медицинскими исследованиями ЦЕРН занимается с 1986 года. По словам специалистов ОЭСР, основной причиной успеха ученых в адронной терапии являются особенности иерархии в отношениях между учеными, студентами и младшими сотрудниками, позволяющие быстро и легко обмениваться идеями с руководителями лабораторий и административным персоналом.



Здание в Протвино, где размещена сборка установок для протонной терапии

Фото: ЗАО «ПРОТОМ»

Адронная терапия в ЦЕРНе основана на работе PIMMS (Proton Ion Medical Machine Study), который был спроектирован за три года - с 1996 по 1999-й. Ученые проекта сотрудничают с онкологическими центрами многих стран мира, например, Национальным центром онкологической адронной терапии в Павии (Италия) и центром MEDAUSTRON в Австрии. Технологии ЦЕРНа используются для создания центров протонной терапии в целом ряде стран. В России - в Институте теоретической и экспериментальной физики имени Алиханова в Москве, где с 1969 года прошли лечение более четырех тысяч человек, а также в Санкт-Петербурге и Дубне, а в Протвино тестируется терапия ионами углерода.
ЦЕРН: физика частиц

В ЦЕРНе был совершен ряд важных открытий в физике элементарных частиц, например, обнаружение нейтральных токов при помощи пузырьковой камеры в первой половине 1970-х годов и промежуточных векторных бозонов электрослабой теории в 1983-м.
Нейтральные токи представляют собой проявление слабого взаимодействия, заключающееся в обмене виртуальными Z0-бозонами между кварками и лептонами без изменения заряда, в отличие от заряженного тока, в котором участвуют W±-бозоны. Существование токов следует из теории электрослабых взаимодействий Салама-Глешоу-Вайнберга, они были теоретически предсказаны авторами в 1973 году. Первоначально наличие таких процессов считалось недостатком электрослабой теории, однако эксперименты в ЦЕРНе изменили такую точку зрения.

Сами частицы, W±- и Z0-бозоны, были открыты в первой половине 1980-х годов в ходе экспериментов на протонном суперсинхротоне (SPS, Super Proton Synchrotron). Коллайдер был рассчитан на энергии порядка 400 гигаэлектронвольт, длина его кольца достигала 6,9 километра. В настоящее время он используется как предускоритель протонов для Большого адронного коллайдера. Открытие бозонов позволило подтвердить правильность электрослабой теории и присудить ее авторам Нобелевскую премию
В 1989 году в ЦЕРНе было определено количество сортов нейтрино (три сорта - электронное, мюонное и таонное). В 1995-м учеными организации впервые получен атом антиводорода, а 2001 году совершено открытие прямого CP-нарушения в двухпионных распадах нейтральных каонов.

\u00b1-\u0431\u043e\u0437\u043e\u043d\u0430\u043c\u0438 \u043a\u0430\u043e\u043d \u043e\u0441\u0446\u0438\u043b\u043b\u0438\u0440\u0443\u0435\u0442 (\u043c\u0435\u043d\u044f\u0435\u0442 \u0441\u0432\u043e\u044e \u0441\u0442\u0440\u0430\u043d\u043d\u043e\u0441\u0442\u044c).","caption":"\u0414\u0438\u0430\u0433\u0440\u0430\u043c\u043c\u0430 \u0424\u0435\u0439\u043d\u043c\u0430\u043d\u0430, \u0434\u0430\u044e\u0449\u0430\u044f \u043e\u0441\u043d\u043e\u0432\u043d\u043e\u0439 \u0432\u043a\u043b\u0430\u0434 \u0432 CP-\u043d\u0430\u0440\u0443\u0448\u0435\u043d\u0438\u0435","credits":"\u0418\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435: Skaller & Maksim/ wikipedia.org"}]">



Диаграмма Фейнмана, дающая основной вклад в CP-нарушение

Изображение: Skaller & Maksim/ wikipedia.org
В результате обмена виртуальными промежуточными W±-бозонами каон осциллирует (меняет свою странность).

CP-сохранение - это инвариантность (неизменность) уравнений теории относительно одновременной замены ее частиц на античастицы (так называемое зарядовое сопряжение) и зеркального отображения положения (в трехмерном пространстве) частиц.



Туннель Большого электрон-позитронного коллайдера во время подготовки для переоборудования под нужды БАК

Фото: Juhanson/ wikipedia.org

В 2012 году В ЦЕРНе открыли частицу со свойствами бозона Хиггса. Ее масса оценивается в 125-126 гигаэлектронвольт, свойства частицы совпадают со свойствами бозона Хиггса Стандартной модели. Это открытие послужило заключительным этапом подтверждения правильности идей, положенных в основу Стандартной модели.
ЦЕРН: технология World Wide Web

Для нужд ЦЕРНа британский ученый Тим Бернерс-Ли и нидерландец Роберт Кайо изобрели технологию Всемирной паутины World Wide Web (WWW). Работая в 1980 году в ЦЕРНе, Бернерс-Ли написал программу Enquire, представляющую собой систему обмена документами, которая включала в себя гиперссылки, базу данных и возможность редактирования документов.



Тимоти Джон Бернерс-Ли

Фото: Paul Clarke/ wikipedia.org

В 1989-м, используя наработки от Enquire, ученые решили создать глобальную систему связанных гипертекстовых документов - современную WWW. Для этого программисты вместе с коллегами впервые создали идентификаторы URI, в том числе протокол HTTP и язык HTML.

В 1970 и 1980 году уже существовали компьютерные сети, в основном в крупных западных университетах и военных ведомствах некоторых стран. Однако работы Тима Бернерс-Ли и его коллег способствовали широкой унификации и популяризации таких технологий. Ученым удалось в первую очередь существенно улучшить гипертекстовое представление данных и реализовать набор прикладных протоколов, обеспечивающих взаимодействие удаленных серверов, содержащих необходимые данные.

Так, сеть ARPANET (Advanced Research Projects Agency Network), первоначально созданная по инициативе военных (для целей связи в случае войны) в США в 1969 году и считающаяся прототипом Интернета, прекратила свое существование в 1990-м. На момент своего создания она объединяла четыре университета: Калифорнийские университеты в Лос-Анджелесе и Санта-Барбаре, Стэнфордский университет и Университет Юты. В 1973 году к сети были подключены Норвегия и Великобритания. На смену ARPANET пришла NSFNet с увеличенной пропускной способностью, являвшаяся до середины 1990-х годов публичной сетью. В настоящее время на основе NSFNet развивается проект Internet2, предназначенный для высокоскоростной связи мощных серверов.

URI (Uniform Resource Identifier) - универсальный идентификатор ресурса, представляющий собой строку из символов, определяющую название и адрес какого-либо источника данных или документа. URI включает в себя два типа идентификаторов: URL и URN.

URL (Uniform Resource Locator) - единый указатель ресурсов, показывает адрес и название источника. Современные схемы URL включают в себя такие известные протоколы, как, например, ftp, http, https и протоколы skype для одноименной программы для видеосвязи и bitcoin для криптовалюты.

URN (Uniform Resource Name) - унифицированное название ресурса; протокол позволяет идентифицировать документ не по его местоположению, а по другим параметрам, например, по IP-адресу и имени, которое остается в случае использования такого протокола неизменным. Считается, что технология URN придет на смену URL.

HTML (HyperText Markup Language) - типизированный язык разметки гипертекста, используемый в Интернете. Язык создавался Бернерсом-Ли во второй половине 1980-х годов до начала 1990-х в ЦЕРНе и предназначался для облегчения доступа ученых к базам данных, содержащих информацию по физике частиц и технические материалы по устройствам ускорителей. Гипертекст позволяет извлекать информацию из документа нелинейным образом, не читая документ от начала до конца, а переходя по гиперссылкам с одного документа на другой.

В 1991 году Бернерс-Ли в рамках проекта WWW впервые ввел в работу веб-сервер, сайт и браузер WorldWideWeb (позже переименованный в Nexus).



Первый веб-браузер WorldWideWeb

Изображение: Tim Berners-Lee for CERN

Таким образом, к концу 1980-х годов ЦЕРН стал форпостом использования интернета в Европе. Будучи первоначально закрытой сетью, предназначенной к использованию внутри ЦЕРНа, 30 апреля 1993-го система стала открытой для всего мира.



Документ ЦЕРНа, опубликованный 30 апреля 1993 года, разрешающий свободное использование технологий WWW

Фото: CERN

Начиная с конца 1990-х годов в ЦЕРНе интенсивно развивается технология грид-вычислений (от английского grid - решетка, сеть). Эта система представляет собой объединение компьютеров, мощности которых используются совместным образом для проведения ресурсоемких вычислений. В ЦЕРНе для обеспечения обработки данных, поступающих с Большого адронного коллайдера, функционирует грид LCG (LHC Computing Grid), доступ к которому имеет 11 академических организаций мира, одновременно выступающих резервными хранилищами данных, к которым подключены остальные - примерно 150 - заведений второго уровня.

Считается, что объем данных, генерируемых коллайдером, увеличивается на порядка 10 петабайт (1015 байт) каждый год. Для сравнения, Google в сутки со всего мира обрабатывает данные в объеме немногим менее 30 петабайт.

Андрей Борисов

Источник

международное сотрудничество, стратегия развития, ядерная физика, ЦЕРН, наука

Previous post Next post
Up