Фото iStock
На груди Железного Человека из серии известных комиксов работает миниатюрный термоядерный реактор: энергии на полеты за атмосферу ему хватает, а вот правдоподобности - нет. В реальности ученые всего мира не могут построить реактор для управляемого термоядерного синтеза даже высотой в несколько этажей. Что им мешает, если на Солнце «реактор» получился сам собой, и как скоро может наступить будущее термоядерной энергетики - разбиралась «Энергия+».
Солнце - гигантский термоядерный котел. Несколько миллиардов лет оно питает теплом и светом все живое на Земле. Наш желтый карлик светит и греет из-за постоянного слияния ядер водорода - этот процесс называется термоядерным синтезом. Сливаясь, атомы теряют часть своей массы, которая высвобождается в виде энергии. Это описывается знаменитым уравнением Эйнштейна E=mc2, согласно которому масса может превращаться в энергию и наоборот.
В результате столкновения ядер водорода возникает ядро более массивного химического элемента - гелия. Выделившаяся при этом энергия в шесть раз выше, чем в ходе реакции деления ядра урана, самого тяжелого долгоживущего (время, за которое половина ядер урана распадется на другие элементы, исчисляется миллиардами лет) элемента в природе. Именно реакция деления урана - источник энергии в реакторах современных атомных электростанций. Осуществить управляемую реакцию деления в первом промышленном реакторе удалось в середине XX века. С тех пор силы физиков-ядерщиков направлены на создание устройства, которое позволило бы управлять и термоядерным синтезом.
Для реакции управляемого синтеза нужны особые ядра водорода с дополнительными нейтронами, которые называются изотопами, - это дейтерий и тритий. Дейтерий стабилен, и его можно найти в морской воде. Тритий же - более редкий изотоп, который выделяют на атомных реакторах при получении лития. Заменить тритий может стабильный изотоп гелий-3. Добывать его так же трудно, но огромные залежи можно найти в грунте на поверхности Луны. Если технологии позволят недорого получать гелий-3 из лунной пыли, то этого будет достаточно для энергоснабжения всей планеты на тысячи лет. Останется лишь построить нужный реактор (токамак).
Реакция термоядерного синтеза (слияния двух легких ядер в одно более тяжелое), в ходе которой высвобождается колоссальное количество энергии
ПОЧЕМУ СЛОЖНО ПОСТРОИТЬ РЕАКТОР ДЛЯ СИНТЕЗА
Атомы всех окружающих нас веществ состоят из ядра и электронной оболочки. Ядра заряжены положительно, поэтому, согласно закону Кулона, они отталкиваются. Чтобы соединиться, им нужно преодолеть кулоновский барьер и сблизиться на расстояние действия ядерных сил - 10-15 метра (один метр, деленный на единицу с пятнадцатью нулями). Для этого необходима огромная энергия, которую можно получить в виде тепла. Солнечный климат для этого идеален, температура внутри звезды достигает экстремальных величин - 15 миллионов градусов. Вещество при такой температуре переходит в состояние плазмы, работать с которой в земных условиях не так-то просто.
Плазма считается четвертым агрегатным состоянием вещества. Если нагреть твердое вещество, оно становится сначала жидким, затем газообразным и, наконец, - плазмой. При температуре в десятки тысяч градусов атомы газа теряют свои электроны и превращаются в ионы - свободные электрические заряды. Такой газ называется ионизованным и является средой, проводящей электрический ток. В естественных условиях Земли плазма встречается в виде разрядов молний или в магнитосфере планеты при полярном сиянии. В космосе она буквально повсюду: материя в межгалактическом пространстве существует именно в плазменной форме. Солнце и звезды тоже являются сгустками сильно нагретой плазмы.
Вещество в состоянии плазмы видел каждый, когда в небе сверкала молния, а вот удержать и сжать такое вещество - задачка не из легких, но ее необходимо решить для реализации управляемого термоядерного синтеза на Земле
Удержать плазму внутри построенных человеком установок тяжело - нагреваясь до миллионов градусов, она плавит даже самое прочное покрытие. Поэтому стенки камер реактора для управляемого синтеза не должны соприкасаться с плазмой. Другое важное условие использования плазмы - сжатие. Если не сжимать разогретую плазму со всех сторон равномерно, она выскользнет, остынет, и реакции в ней прекратятся.
Плазма подобна надутому воздушному шарику - как бы равномерно вы ни надавливали на него, шар всегда будет просачиваться через пространство между пальцами. Солнечная плазма не разлетается по всему космосу из-за огромной массы звезды - ее гравитационное давление постоянно сжимает ядра атомов вместе. Масса Земли в 330 тысяч раз меньше, поэтому создать подобное давление на нашей планете невероятно трудно. Каждый раз, когда ученые пытались сжать плазму в реакторе, она выплескивалась наружу.
КАК ПРИЧЕСАТЬ ЕЖА, ИЛИ ПОПЫТКИ УДЕРЖАТЬ ПЛАЗМУ
К решению задачи удержания плазмы вплотную подошли советские ученые Института им. Курчатова в 1950-х. В магнитной ловушке, созданной под руководством академиков Андрея Сахарова и Игоря Тамма, горячая смесь дейтерия и трития удерживалась с помощью магнитного поля и не касалась стенок реактора. Эта экспериментальная установка c вакуумной камерой в форме бублика (тора) стала известна во всем мире под именем Токамак - тороидальная камера с магнитными катушками. В ней впервые удалось достичь температуры термоядерной реакции в 100 миллионов градусов - почти в 10 раз больше, чем внутри Солнца!
У любого термоядерного реактора типа токамака есть отверстие в центре. Объясняется это теоремой о причесывании ежа, согласно которой невозможно причесать свернувшегося клубком ежика так, чтобы ни одна его иголка не торчала наружу. Если придать плазме форму шара, то ее магнитное поле всегда будет иметь минимум одну выпадающую точку. С тором такой проблемы не возникнет, его можно гладко «причесать» по всей поверхности, причем разными способами.
Так выглядит изнутри тороидальная камера (токамак) для осуществления реакции синтеза
Прошло почти 70 лет, но токамак все еще остается самым перспективным типом термоядерных реакторов - практически у каждой развитой страны сегодня есть собственная тороидальная установка. Реакторы других форм создают для изучения свойств плазмы. Например, сферический токамак напоминает сплюснутый глобус и позволяет дольше удерживать плазму. А в стеллараторе, прозванном «мятым бубликом», магнитные катушки находятся снаружи тора, за счет чего он может работать без перерывов, в отличие от классического токамака.
Существуют и альтернативные виды реакторов, например установки на инерциальном удержании. На тритий-дейтериевую мишень размером с булавочную головку направляют больше сотни сверхмощных лазеров. Они нагревают мишень до сотен миллионов градусов и сжимают в тысячи раз, запуская термоядерную реакцию. Такую энергию, полученную лазерным синтезом, можно контролировать и использовать. Однако подобные реакторы работают в импульсном (непостоянном) режиме, поэтому вещество быстро разлетается и долго удерживать плазму не удается. Отдельная задача в том, чтобы сжать вещество абсолютно симметрично со всех сторон.
Наконец, даже если в реакторе удастся обеспечить нужную форму и плотность плазмы, потери энергии на это должны быть минимальны, чтобы термоядерная реакция была экономически выгодной. Это критерий Лоусона, который стал одной из главных целей управляемого термоядерного синтеза. Именно на выполнение этого условия нацелены современные экспериментальные мега-проекты термоядерного синтеза.
ОДИН РЕАКТОР НА 35 СТРАН
В 2010 году на юге Франции развернулась стройка исполинских масштабов. Здесь на базе исследовательского центра ядерной энергетики «Кадараш» создают международный термоядерный реактор - ITER (от латинского «путь»). Стоимость токамака ИТЭР оценивается в 20 миллиардов евро. Ни одно государство не может позволить себе запустить подобный проект самостоятельно, поэтому страны объединяют свои силы.
Вид с воздуха на установку ИТЭР - международную исследовательскую площадку для изучения свойств плазмы при реализации термоятерного синтеза
Вклад стран-участников не денежный, а технический. Практически у каждой из 35 стран есть собственные термоядерные мини-установки. Работа разделена по секторам будущего реактора, каждая из держав производит свою часть оборудования. Россия - один из главных участников: у наших ученых многолетний опыт использования токамаков.
ИТЭР будет весить 23 тысячи тонн (некоторые детали столь тяжелы, что пришлось усиливать дороги, ведущие к реактору), а по высоте, более 70 метров, он обгонит Спасскую башню. Объем плазмы, который надеются получить ученые, - 40 кубометров. Температура в мега-реакторе достигнет головокружительной отметки в 150 миллионов градусов. Чтобы добыть достаточное количество плазмы, магнитное поле в токамаке должно быть в 200 тысяч раз больше земного! Огромные сверхпроводящие магниты будут охлаждаться до экстремальной отметки в минус 269 градусов Цельсия. «Кадараш» станет самым горячим и самым холодным местом во Вселенной одновременно.
Завершить строительство ИТЭР планируют к концу 2025 года, тогда же ученые надеются получить первую плазму. Но запуск реактора не откроет эру управляемого термояда. ИТЭР - это прежде всего экспериментальная установка, призванная доказать, что человечество в принципе способно получать термоядерную энергию в промышленном масштабе.
Высота установки ИТЭР - более 70 метров
КОСТЮМ ТОНИ СТАРКА - БУДУЩЕЕ ИЛИ ФАНТАСТИКА?
Одна из необходимых особенностей современных токамаков - гигантские размеры. Чем меньше реактор, тем больше плазмы выделяется в процессе диффузии, и тем менее эффективно он работает. Поэтому о миниатюрных термоядерных реакторах в стиле костюма Железного Человека в ближайшем будущем мечтать не приходится. Однако сократить размеры токамаков может помочь искусственный интеллект (ИИ).
В 2022 году разработали алгоритм, способный создавать и контролировать плазму. ИИ прошел тесты на настоящем токамаке, где он управлял термоядерным синтезом. Если магнитными полями и плазмой внутри реактора получится управлять более тонко, его габариты можно будет уменьшить и использовать как в промышленности, так и в космосе.
ТОПЛИВО ДЛЯ ТЕРМОЯДА, БЕЗОПАСНОСТЬ И ПЕРСПЕКТИВЫ УПРАВЛЯЕМОГО СИНТЕЗА
У термоядерных реакторов мало общего с реакторами на атомных станциях. Если удержание плазмы прекратится, то она расширится и охладится, реакция остановится и не приведет к взрыву, хотя стенки термоядерного реактора разрушатся от взаимодействия с плазмой. В отличие от реакции деления, в процессе синтеза не образуются долгоживущие радиоактивные отходы. «Отходы» термоядерного синтеза - гелий и нейтроны, защиту от которых давно научились строить.
Управляемый синтез - это потенциально бесконечный источник энергии. Больше половины пути к его освоению пройдено, но до настоящего момента не удалось достичь баланса температуры, плотности и времени удержания плазмы на одном виде реакторов. Кроме того, неизвестно, окупится ли создание огромного реактора и сложной инфраструктуры на основе термоядерной энергетики. Все действующие сегодня установки убыточны. Технологиям на основе термоядерной энергетики еще предстоит пройти длинный путь, прежде чем их начнут использовать в промышленных масштабах.
Другие статьи об энергии и энергетике читайте на сайте
журнала Энергия+