Как известно, физика - наука точная, целиком и полностью отвечающая математическим формулировкам. И это позволяет утверждать, что, с одной стороны, современная физика имеет точную доказательную базу, но, с другой, что эта же физика не имеет прямых соприкосновений с природными явлениями и природными процессами. Иными словами, современная физика изучает не окружающую нас Природу-Вселенную, но строит некие математические модели, каковые, прежде всего, удовлетворяют принципам математики, и сквозь призму которых мы и пытаемся изучать природные взаимодействия.
Взять, например, термодинамику. Большинство ее формулировок, так или иначе, связано с понятием «идеальный газ». Т.е. мы построили матмодель несуществующей в природе среды, каковая по своим характеристикам вообще ни на что природное не похожа, но при этом полностью удовлетворяет заложенным математическим взаимосвязям. И теперь на основе выводов об этой среде выстроили целый пласт науки, изучение которого начинается еще в школе.
Подобный подход идеально подошел бы для построения виртуальных миров в компьютерных играх, но совершенно не годится для изучения окружающей нас реальности, основным инструментом постижения которой предлагается использование физики процессов.
Основное отличие физики процессов заключается в том, что она не строит матмодели, но изучает-исследует природные процессы во всей своей сложности и многозначности. И поскольку многомерная сложность реальных процессов, а также отсутствие математических взаимосвязей в них не позволят нам получать однозначное, односложное трактование взаимодействий, то первичной задачей физики процессов станет построение «генеалогического древа» процессных взаимодействий, по характерным признакам в карте которых мы начнем в дальнейшем угадывать взаимосхожесть микро и макро-процессов, в итоге, постигая непостижимое.
По сути, физика процессов мало чем отличается от построения технологических карт наших производственных предприятий. За исключением того что для построения, скажем, автомобиля мы пытаемся соединить в единую систему известные нам процессы с целью получения на выходе соответствующего продукта, тогда как в физике процессов мы должны правильно определить уже действующие процессы и расписать их взаимодействия. Конечно, масштабность предполагаемых работ и впечатляет и отталкивает, но, тем не менее, мы просто обязаны ее выполнить, если хотим получить адекватное представление об окружающем нас мире.
Несколько слов по поводу - что в этом случае можно считать природным процессом? Скажем, птичка чирикает на ветке - это процесс или нет? В терминологии физики процессов главная особенность данного термина заключена примерно в том же, что и отличие бизнес-процесса от обычного производственного процесса. Т.е. производственный процесс может называться бизнес-процессом только в том случае, если на выходе у него идет какой-либо конечный продукт, предназначенный для дальнейшей реализации. Т.е. если токарь точит шуруп - это процесс производственный. Но если мы реализовали процесс производства шурупов - как конечную продукцию производственного этапа, то это можно уже рассматривать в качестве бизнес-процесса. Аналогичным образом и в физике процессов: лишь те из происходящих изменений можно называть природным процессом, которые имеют на выходе какой-либо вполне понятный результат и проявляют ярко выраженную цикличность или жесткую повторяемость. Скажем, процесс кровообращения, являющийся частью системы жизнеобеспечения того или иного организма; или круговорот воды в природе; или вращение планет вокруг Солнца; или химические реакции - всё вышеперечисленное (и это далеко не полный список) можно отнести к изучаемому физикой процессов.
Почему именно так, а не иначе? Потому что построение карты взаимодействий всего и вся невозможно в принципе. Невозможно расписать технологическую карту производства даже автомобиля, если мы начнем последовательно описывать каждую производственную операцию. Только используя бизнес-процессы - выделенные участки производства, обеспечивающие выпуск чего-то конкретного, передаваемого на следующий уровень сборки, и рассматриваемые в качестве черных ящиков с известным лишь входом и выходом - можно создавать огромные карты как технологического, так и научно-познавательного плана.
Иными словами, построение «генеалогического древа» природных взаимодействий возможно лишь на основе процессного подхода, использующего принцип, схожий с организацией бизнес-процессов в производстве.
И, вот, на фоне предлагаемого подхода обратимся к одной из самых распространенно используемых как в науке, так и в обиходе сущностей - «время».
Что такое время?
Несмотря на популярность данного термина, ни один ученый, ни один здравомыслящий человек не может дать определения данному термину. Почему? Да, потому что никакого времени в природе не существует! Время - это чисто математический или расчетный параметр, каковой мы (почти) всегда можем рассчитать, но никогда - потрогать/пощупать, увидеть или определить непосредственно. Время - это важнейший индивидуальный параметр каждого отдельного природного процесса, рассчитать который мы можем лишь сопоставляя события изучаемого процесса с каким либо иным процессом, например, движением стрелок на часах.
Да, мы настолько «привыкли» к его обиходности, что пытаемся найти, определить физическую сущность времени как вещи, как объекта или поля. Но не находим. И сделать это, в принципе, невозможно.
Наиболее адекватное восприятие сущности «время» дает нам понятие «плотность» из физики материалов. Что такое плотность? Это расчетный параметр, равный отношению массы материала объекта к его объему. В природе достаточно редко встречается однородность материала, а потому понятие плотность зачастую несет в себе условный характер. Более того, следует понимать, что плотность это не просто какая-то там единая физическая сущность, но расчетная характеристика данного конкретного материала/среды в соответствующих условиях.
И если мы перенесем понятие «плотность» из физики материалов в физику процессов, то и получим весьма характерное сопоставление: Время - это плотность событий (если хотите - интенсивность событий) данного конкретного процесса, проистекающих в соответствующих условиях, определяемых внешней средой.
Также как и плотность разных материалов/сред различается своим значением, так и параметр время в разных процессах принимает собственное значение.
Также как и в случае с плотностью наложение природных процессов друг на друга создает некую неоднородность их проистекания, что ведет к условности (неоднозначности) определения параметра «время» в изучаемой системе процессов.
И, думается, что также как и в случае с плотностью имеет смысл создание таблицы коэффициентов «время» для каждого выделенного природного процесса, рассматриваемого в стандартных условиях окружающей среды. Хорошим примером подобного подхода является определение периодов полураспада радиоактивных веществ, где время рассматривается не в относительном по отношению к движению стрелок часов формате, но в абсолютном выражении по отношению к процессу распада радиоактивных веществ. Правда, и в этом случае, следовало бы выбрать некий элемент за точку отсчета (допустим, тритий (водород H3) с периодом полураспада 12.3 года) и присвоить ему коэффициент «время» равный 1. Тогда, скажем, для плутония 239 (с периодом полураспада 24.4 года) наш коэффициент «время» в организуемой таблице был бы равен 2 (24.4/12.3) и т.д.
Возможно, что кто-то в данном случае возразит: таблица полураспада радиоактивных веществ и создана по предлагаемому правилу с тем лишь отличием, что «точка отсчета» выбрана не из элементов таблицы, но в ее качестве фигурирует элемент (период) процесса вращения Земли вокруг Солнца. Т.е. если в качестве единицы абсолютного времени взять один оборот Земли вокруг Солнца, то мы в точности и получим используемую ныне таблицу. Совершенно верно! Но использование периода вращения планет в качестве основы - не очень хороший вариант, поскольку он, во-первых, может быть подвержен изменению, а, во-вторых, мы не видим весь процесс - его начало и завершение, видим лишь год, несколько лет, возможно даже тысячелетие сумеем увидеть/рассчитать. Но какую долю этот период составляет от «долгожительства» всей системы, мы вряд ли когда-либо узнаем. Т.е. получается, что абсолютные значения времени различных процессов, мы привязываем к условной единице периодичности вращения Земли, что не есть правильно. Тем не менее, отметим, что периоды полураспада не закрывают нам дверь для выбора какого-либо иного процесса в качестве единицы отсчета. И единственным правилом здесь должна быть возможность полного наблюдения всего процесса - от рождения и до его завершения - для получения абсолютного, а не относительного значения.
Современное представление в науке, что время есть течение некой материальной субстанции, не имеет ни малейшего обоснования. По этому поводу неоднократно встречал возражение, что замедление атомных часов на космических станциях - неоспоримый факт, доказывающий торжество теории относительности. Но, ребята, вы просто выдаете желаемое за действительное. Атомные часы связаны с сущностью «время» точно таким же образом, что и механические часы. Вы же не будете утверждать о том, что время остановилось, поскольку ваши часы, попав в воду, встали?! Почему же тогда, замедление процесса квантовых скачков цезия, вы воспринимаете как замедление времени?! Атомные часы - это просто прибор, один из многих, сделанных человеком. Так и нужно искать причину, по которой этот прибор меняет свое значение, находясь на удалении от Земли, в невесомости, а не привязывать его несовершенство к мистическим временным потокам!
И даже если мы в качестве аллегорического представления и предложим для времени соответствующий образ потока, то он предстанет в виде множества переплетающихся друг с другом процессных ручейков, с различной скоростью/интенсивностью стекающих в озера систем-организмов, множество которых участвует в организации еще более масштабного потока. И при этом необходимо понимать, что всё это - плоская проекция значений временных констант с трехмерного мира природных процессов.
На мой взгляд, наше текущее представление времени есть результат «киношного» восприятия. И думается, что не случайно появление теорий относительности совпало с периодом зарождения и бурного развития кинематографа, позволившего запечатлевать события и прокручивать их с различной скоростью и даже в обратной последовательности. Казалось бы - еще чуть-чуть и мы достигнем подобного эффекта и в реальной жизни. Увы, это всего лишь магические иллюзии, недостижимые в банальной простоте реального мира. Мы можем лишь сохранить в памяти или на каких-либо носителях прошедшие события, но никоим образом не можем их вернуть.
Современная физика, как, впрочем, и многие другие науки, делает упор на объекте, который претерпевает изменения в результате определенных воздействий на него. В этом факторе заложен «корень зла». Важен не объект, но - процесс, в котором участвуют те или иные объекты. Не личность формирует историю, но общественные процессы, в которых участвует данная личность. Не объекты создают и развивают нашу Вселенную, но процессы, использующие соответствующие объекты для достижения собственных целей. И это основная парадигма физики процессов, которую нам еще предстоит сформировать.