Исследователи из лаборатории SAND при Чикагском университете разработали инструментарий Fawkes с реализацией метода искажения фотографий, препятствующего их использованию для обучения систем распознавания лиц и идентификации пользователей. В изображение вносятся пиксельные изменения, которые незаметны при просмотре людьми, но приводят к формированию некорректных моделей при использовании для тренировки систем машинного обучения. Код инструментария написан на языке Python и опубликован под лицензией BSD.
Обработка фотографий предложенной утилитой перед публикацией в социальных сетях и других публичных площадках позволяет защитить пользователя от использования данных фотографий в качестве источника для обучения систем распознавания лиц. Предложенный алгоритм предоставляет защиту от 95% попыток распознавания лиц (для API распознавания Microsoft Azure, Amazon Rekognition и Face++ эффективность защиты составляет 100%). Более того, даже если в будущем оригинальные, необработанные утилитой, фотографии будут использованы в модели, при обучении которой уже применялись искажённые варианты фотографий, уровень сбоев при распознавании сохраняется и составляет не менее 80%.
Метод основывается на феномене "состязательных примеров", суть которого в том, что несущественные изменения входных данных могут привести к кардинальным изменениям логики классификации. В настоящее время феномен "состязательных примеров" является одной из главных нерешённых проблем в системах машинного обучения. В будущем ожидается появление систем машинного обучения нового поколения, лишённых рассматриваемого недостатка, но эти системы потребуют значительных изменений в архитектуре и подходе к построению моделей.
Обработка фотографий сводится к добавлению в изображение комбинации пикселей (кластеров), которые воспринимаются алгоритмами глубинного машинного обучения как характерные для изображаемого объекта шаблоны и приводят к искажению признаков, применяемых для классификации. Подобные изменения не выделяются из общего набора и их чрезвычайно трудно обнаружить и удалить. Даже имея оригинальное и модифицированное изображения, проблематично определить, где оригинал, а где изменённая версия.
src:
https://www.opennet.ru/opennews/art.shtml?num=53414code:
https://github.com/Shawn-Shan/fawkes