Борун Александр Феликсович. Инженер-физик. 01

Jul 15, 2023 12:39

Социалистическое производство глазами инженера Завод приёмно-усилительных ламп (1978-1985). Завод ПУЛ производил электронные лампы давно, и попал в обычную социалистическую ценовую ловушку: по нормам полагалось с течением времени снижать себестоимость продукции и цены на изделия, даже если изделия производятся давно и по одной и той же технологии. Рано или поздно производство становится невыгодным. Заводы один за другим отказываются от такого производства и перепрофилируются.

Кто остаётся последним, тому этого сделать не дадут - лампы-то нужны! Остаётся много оборудования, вполне действующего, в которых они применяются, и требующего ремонта, а может, какое-то ещё продолжает выпускаться. Помню, на военной кафедре нам объясняли, что наш локатор лучше американского, хотя наш ездит на грузовике, а их - перетаскивается двумя солдатами - потому что у них он полупроводниковый, а полупроводники гораздо более подвержены действию радиации в случае ядерной войны, чем лампы…

Источник: "Работы. Мемуар" ... Правда, весь этот грузовик с РЛС сделается бесполезным при попадании в него одной пули, а попасть в него куда легче, чем в их чемодан, но он, де, и не должен выезжать впереди армии. Нусутх. ПУЛ, оказавшись в роли, возможно, последнего, или одного из последних выпускающих лампы заводов, спасался двумя способами. Он сам изготавливал стекло для ламп, на это работал стекольный цех. Кроме ламп, продавалось стекло, и давало 40% всей выручки завода. Также он осваивал новые производства - в частности, эти самые катодолюминесцентные индикаторы.

Но ОКБ при заводе осваивало и другую новую по тому времени продукцию. Например, индикаторы на жидких кристаллах, которыми мы занимались в универе на курсовой. Или полупроводники. На жидких кристаллах делались, например, цифровые индикаторы для настольных часов. По размерам и форме такие часы напоминали мыльницу. Наручных электронных часов ещё не делали. Между прочим, я, как-то ошибившись в очередной раз при наборе номера на телефоне, предложил начальнику добавить в телефон такой индикатор, чтобы было видно, какой номер набираешь. Набор номера был дисковый, и очень легко недокрутить диск немного до нужной цифры. Но он сказал, никто такие телефонные аппараты покупать не будет. Зачем это нужно? Набирай номер аккуратно, и всё. А определение номера, с которого звонят, телефон тоже, естественно, не делал. Да и в каком виде он бы его сообщал? А теперь без индикации номера, который набираешь, трудно себе представить телефон, хотя и набор кнопочный, в котором труднее ошибиться.

В точности как нам в универе рассказывал директор завода «Тантал» Умнов. (про завод "Тантал" ) Он читал лекции, вроде как по управлению производством, а на самом деле просто рассказывал всякие занимательные случаи (сам сообщил, что студенты прозвали эти лекции «Я и моя биография»). В том числе об СВЧ печках, которые тогда начинал выпускать, а все его отговаривали - никто, дескать, не купит, у всех есть плиты, духовки… И так же, он рассказывал, его отговаривали когда-то от выпуска холодильников. Кому он нужен? Зимой вывесил авоську с портящимися продуктами за окно, и всё! Действительно, это была повсеместная практика, с форточкой. Даже был анекдот про Чапаева и Петьку, что они подставили лестницу и тырят эти авоськи.

А тут милиция: «Вы чего тут делаете?» Чапаев не растерялся: «Да вот, новогодние подарки развешиваем!» - «Какие новогодние подарки?! До Нового года ещё месяц!» - «Ого! Вот это мы лопухнулись! Петька, снимай авоськи обратно!» А я ещё помню, как вороны приспособились расклёвывать нашу авоську, а мы стали вешать её не совсем снаружи, а между стёклами… А летом просто надо много, скажем, мяса не покупать - сразу сварить и съесть. А масло можно в миску с водой положить. А картошку в погреб. Между прочим, у нас был холодильник «Саратов-2». Маленький, вместо морозилки не отделённое от остального объёма микроскопическое решетчатое сооружение, но работал годами и десятилетиями. В отличие от современных.

Умнов был очень нервный, у него даже был бессмысленный автоматический жест, он кистью руки как бы рисовал в воздухе сложную кривую, проводя щепотью на уровне пояса, и перед лицом, всегда одну и ту же. Похоже, сам он этого не замечал, к его словам этот жест не имел никакого отношения. Об управлении производством он не рассказывал, скорее уж, о его планировании. Например, рассказал, что когда-то был в Финляндии и зашёл там в магазин электробритв. Просто там было пусто и можно было посмотреть, какие там электробритвы продаются. Покупать он не собирался, бритва у него была.

К нему сразу подскочили два или три продавца и стали уговаривать опробовать их бритвы. Вы не покупайте, вы только попробуйте. Он попробовал - и купил. У нас тогда производились бритвы, в которых крутились ножи в форме пропеллера за толстой круглой решёткой, брили они не очень хорошо, да ещё иногда дёргали волоски. У меня тоже когда-то такая была. А у этих были так называемые плавающие ножи в форме тоже некоей решётки, скользящей за очень тонкой сеткой. Спустя некоторое время, рассказывал Умнов, он в министерстве встретил какого-то знакомого, который ему сказал, что они купили линию по производству таких бритв, «вот про которые ты всем уши прожужжал». И недорого, 10 тыс. $. Они, правда, пытались нам всучить ещё за 30 тыс. технологию производства сеток для этих бритв, но мы, конечно, не купили.

Что мы, сетку сами не сделаем?.. Тут-то и начались проблемы. Если сетка тонкая, прорезается и выходит из строя. Если толстая, бритва бреет плохо и дёргает волоски. Оказалось, сетка довольно нетривиальная. У неё дырочки не круглые, а шестиугольные. Волосок зажимается в угол и срезается. А если дырка круглая, он, имея боковую свободу движения даже на краю дырки, вибрирует и сопротивляется. А шестиугольные дырочки не изготовишь штампом с иголочками, нужна фотолитография, как для электронных схем. В конце концов, сетки делать научились, но это потребовало научно-исследовательской работы и много времени. И уж наверное, обошлось дороже.

Ещё он рассказывал забавный эпизод в связи с производством видеомагнитофонов, которое организовал на своём заводе. Там в основе стабильности протяжки магнитной ленты был вращающийся цилиндр. Они купили в Японии десять видеомагнитофонов, разобрали их на детали и стали измерять диаметр цилиндра, чтобы установить, какой должен быть разброс размеров. Оказалось, нулевой. Измерительные инструменты, которыми пользовались измерявшие, имели худшую точность изготовления, чем эти цилиндры.

Что касается управления производством в изложении Умнова, вспоминается только один эпизод, и то за цифры не ручаюсь. Понадобилось директору десять новых станков. Послал заявку. Получил пять. В следующий раз в таком же случае послал заявку на двадцать станков. Получил семь. Тогда он недовыполнил годовой план. Получил выговор и пятнадцать станков. Не знаю, можно ли это отнести к управлению производством, и зачем это студентам. Разве что в порядке общей информации о состоянии дел в промышленности.

На работе я услышал ещё больше таких занимательных историй из области промышленности. Например, про ФРГ. Заключили с ними договор о взаимных поставках техники, чтобы не тратить валюту. У них набрали в рамках договора какого-то оборудования, а они долго выбирали, листали каталоги, и, наконец, попросили на всю сумму отгрузить форвакуумные насосы. Производители насосов некоторое время очень гордились качеством своей продукции. Пока не оказалось, что немцы выливают из них машинное масло и используют, а сами насосы отправляют в металлолом. Выбрали как сырьё, а не как оборудование.

С теми же немцами был другой обескураживающий эпизод. Они водили нашу экскурсию по машиностроительному заводу. Экскурсия была не на один день. И вот на второй день экскурсанты увидели, что там появилась ещё японская экскурсия, и, что интересно, от японцев некоторые цеха, которые нашим показывали, закрыли и их туда не водят. Почему так? - спросили они, ожидая, наверное, ответа вроде «мы вам доверяем больше», но дело было не в том. - Японцы, - сказали немцы, - только покажи им что, они через две недели будут выпускать это у себя. А вы хорошо, если через несколько лет раскачаетесь, когда мы уже будем снимать это с производства.

Настолько же обескураживающий ответ дал японец на японской выставке электронной промышленности в Москве, когда его спросили, как он думает, на сколько лет мы от них отстали в этой области. - Навсегда, - сказал он. Спрашивающий-то имел в виду всего лишь узнать, на уровне какой их давности мы находимся, ну, или, сколько лет нам потребуется для достижения их современного уровня. А он понял вопрос так, когда мы их догоним. В принципе, в его понимании вопрос был более существенным.

Забавные истории не обязательно касались каких-то дальних стран. Например, один сотрудник нашего завода поехал не далее как в Волгоград, осваивать технологию вакуумного заполнения жидкокристаллических индикаторов. Оно делается так. Индикатор без жидкого кристалла, для которого оставлена тонкая щель, помещается под вакуумных стеклянный колпак совместно с блюдечком с жидким кристаллом. Воздух откачивается, и индикатор автомат опускает краем в блюдечко. Когда под колпак впускают воздух, атмосферное давление загоняет жидкий кристалл в индикатор на предназначенное ему место.

Освоив технологию, сотрудник привёз с собой одну такую установку с вакуумным колпаком и насосом. И стал обучать всех на ней работать. Через некоторое время для растущего производства потребовалось изготовить ещё парочку таких установок. Тут обратили внимание на то, что стеклянный колпак имеет хитрую форму. Не просто колпак, а с тремя выступами сверху, вроде закруглённых рогов. Да ещё нижний край у него в форме не окружности, а прямоугольника со скруглёнными углами. Нельзя ли обойтись без всего этого, чтобы проще делать колпак? Проконсультировались с тем сотрудником, как единственным специалистом, и он категорически настаивал, что именно такая форма совершенно необходима, иначе работать не будет. Всё же спросили и волгоградцев. Они долго смеялись и объяснили, что они, вообще-то, выпускают кинескопы. И что один списанный кинескоп использовали как колпак. На вакууме форма колпака практически не сказывается.

Но была и про японцев аналогичная история. Они купили у американцев насос «на пробу», а на самом деле с целью скопировать и наладить производство. А там в цилиндре, во внутренней стенке, была небольшая каверна. Скорее всего, при отливке в металле был пузырёк. На производительность насоса маленькая каверна практически не влияла. Но осторожные японцы (помните историю Умнова про бритвы и сетки?) решили, что лучше каверну воспроизвести. Всё же, не будучи столь тупо суеверны, как тот наш педант, они не стали каким-то специальным инструментом выгрызать каверну на внутренней поверхности цилиндра, а сверлили снаружи отверстие и заглушали винтом, оставляя немного пустого места.

Решили, что уж форма каверны не может играть роли. Американцы смеялись над этим решением рабски следовать оригиналу. А напрасно. Японцы, действительно, через две недели начали производство, а если бы стали испытывать пробный экземпляр насоса с каверной и сравнивать с насосом без каверны, потеряли бы ещё столько же времени. А время начала выпуска дороже лишней небольшой технологической операции. Потом можно всё выяснить по ходу дела, а сперва лучше так.

С этим копированием была история, подтверждающая невысокое мнение немцев о нашей способности к нему. Кажется, отец рассказал. Он был конструктор. У них купили металлообрабатывающий станок и пытались скопировать. Кажется, это был просто токарный станок, не с цифровым программным управлением, но с необычайно высокой точностью обработки изготавливаемых деталей. Скопировали его от и до, даже проанализировали материалы, из которых были изготовлены те или иные его узлы, и подобрали аналогичные советские сплавы. Изготовили.

Работает, но нужной точности не даёт. Очень долго с ним возились. Ну всё в точности так, как у оригинала, и вот тебе. Через очень большое время выяснилось, что дело было «всего лишь» в технологии сборки. Его полагалось собирать с помощью динамометрических ключей, затягивая все резьбовые соединения до определённого усилия. А копию собирали обычными гаечными ключами, завинчивая всё до упора. Вероятно, от этого возникали какие-то напряжения, вибрации - и портили точность. Так что не так-то просто что-то скопировать, нужно уже быть на соответствующем уровне.

Например, попытались у нас на заводе скопировать японскую шахматную машинку, точнее, не саму её, а её индикатор. У неё он изображал шахматное поле с фигурами, но мог пригодиться для чего угодно. Предположительно, хоть для маленького телевизора, если быстродействия хватит. Машинка, между прочим, довольно хорошо играла в шахматы. Выиграть у неё смог только один человек. Случайно так совпало, на заводе ПУЛ работал чемпион СССР по переписке. Это, конечно, не то же самое, что чемпион, соревнующийся с соперниками в ограниченное часами время, но всё же.

Он обнаружил, что у машинки большой, но всё же ограниченный запас запомненных вариантов игры, и нужно её сбить с толку каким-нибудь непредусмотренным ходом, например, взять и пожертвовать ферзя. Не для задуманной комбинации, а просто так. Тут у неё всё сбивалось, и она начинала играть довольно плохо. Впрочем, никто, кроме него, не мог и так у неё выиграть - всё-таки без ферзя тяжело. Но выигрышем у машинки все успехи и ограничились.

Сделать такой же индикатор не удалось. Оказалось, по оригинальной технологии каждому элементу экрана (точке изображения) подходило с двух противоположных сторон два тонких проводочка из напылённого на поверхность экрана металла. Но технология на нашем заводе не позволяла изготовить столь тонкие и тесно расположенные проводочки. Меж тем для управления «точкой» на самом деле было достаточно одного провода на каждый пиксель экрана. Решили одним и обойтись. Тут начались проблемы.

При фотолитографии, с помощью которой из слоя напылённого металла вытравливались отдельные дорожки - провода, существенна чистота атмосферы на производстве. У японцев, по слухам, организуя электронное производство на некоем небольшом острове, накрыли его водяным куполом, вроде зонтика. В середине стоит труба и этот самый зонтик водяной из неё льётся, расходясь во все стороны. И всё ради уменьшения количества пыли. У нас же, хотя какие-то меры против пыли принимались, видимо, они были не того уровня.

Когда речь шла о микросхемах меньшей площади, севшие случайно в процессе фотолитографии пылинки приводили, возможно, к браку отдельных микросхем, но достаточно большая часть их оставалась годной. А при сравнительно большой площади этого экрана непременно хоть одна пылинка на него попадала. Проводок прерывался и сигнал до «точки» не мог добраться. А организация изображения на этом экране была такова, что выпадение одной-единственной точки создавало на экране чёрный крест, в котором не работающая точка была в перекрестье. Если таких точки было две, два пересекающихся креста рисовали мрачную тюремную решётку. Несмотря на длительные попытки, не удалось изготовить даже одного-единственного экземпляра такого экрана, похвастаться успехами перед начальством в министерстве. Только зря хорошую машинку разломали.

Раз уж я взялся вспоминать про японцев, расскажу, что помню, о покупке у них линии производства индикаторов. Не помню уже, каких, катодолюминесцентных, жидкокристаллических, или ещё каких-то. Делегация, ездившая в Японию, посмотреть на месте, как у них работает такая линия, рассказала потом про это на заводе, а дальше слухи передавались. Я ни с одним из тех, кто ездил, не был знаком. Но, думаю, большого искажения не произошло. Первое, что их поразило, были просторные помещения. Все же знают, в Японии везде теснота. Остров небольшой, много площади занимают горы, население огромное. Тогда, кажется, было 110 миллионов, в СССР - 250, а территория во сколько раз больше! Но оказалось, когда для производства нужно место, они не скупятся. В отличие от нас. Производство размещено в одноэтажном (!) здании, точнее, это квадрат, у которого одна сторона двухэтажная - там контора, а три одноэтажных. В середине квадрата зелёный двор для отдыха персонала. Единицы оборудования стоят на большом удалении одна от другой.

Это тут же сказалось. У них там была печка для отжига деталей индикаторов, с температурой внешней стенки 80°С. По нашим нормам полагается не выше 40°С. Японцы не поняли, какую она может представлять опасность. Вот же, на полу нарисована толстая красная линия, чтоб не подходили, табличка предупреждающая висит, что ещё надо? Наши не могли сказать откровенно, что у нас в цеху такая теснота, что никакая линия и табличка не поможет - там просто не протиснешься, не обжёгшись об печку. В результате отсутствия у делегации внятных аргументов японцы согласились добавить теплоизоляции на печку, но за наш счёт.

Второе, что удивляло, оказалось, японцы вовсе не всё подряд автоматизируют. Известно же, у них на сборке автомобилей роботы работают. Но они, видимо, делают это, только когда выгодно, а когда нет - и так сойдёт. И вот стоит рабочий и вручную обтачивает прямоугольные стёклышки для индикаторов, делая на них по краю фаску на вращающемся абразивном круге. Делает он это так. Берёт сразу двумя руками два стёклышка, прикладывает к кругу и делает одно непрерывное вращательное движение, длящееся примерно одну секунду. Вжжих! Откладывает стёклышки и берёт следующие… Делегация постояла возле него, засекла время на изготовления фасок на каком-то количестве стёклышек, и, потрясённая производительностью труда, отошла от этого не автоматизированного рабочего.

Кстати, читал я как-то, что на контроле микросхем там сидят японки и смотрят в бинокулярный микроскоп, выискивая брак. Только он настроен своеобразно. В каждый окуляр видна своя половина предметного столика, а вовсе не его середина. Так контролёрша, опять же двумя руками сразу, берёт двумя пинцетами сразу две микросхемы и кладёт под микроскоп, каждым глазом рассматривает свою микросхему и ускоряет работу вдвое. Или почти вдвое. Не знаю, правда ли это. Это я в интернете когда-то прочёл. Может, просто дефекты искали, совместив две в идеале одинаковые микросхемы в бинокулярном поле зрения.

А вот что мне на заводе рассказывали про аналогичную ловкость. В может, уже на работе в Москве позже, теперь не помню. Но такое впечатление, что всё-таки ещё в Саратове. Японский наладчик какого-то оборудования вовсю пользовался своим умением есть палочками, требующим управляться независимо двумя палочками одной рукой. У него был осциллограф, стоящий на полу на ножках, а экран на верхней его стороне. Он взял одной рукой сразу два щупа этого осциллографа и тыкал ими сразу в две выбранных точки на схеме, а другой рукой крутил ручки настройки на осциллографе. Очень быстро.

Что касается той линии производства индикаторов, японцы рассказали, что у них на ней работает сто человек. Но, когда они такую продавали в ФРГ, немцы попросили их предусмотреть рабочие места для двухсот. Наши подумали, и попросили перерассчитать для пятисот. Опять же, не могли они сказать, что у нас части этой линии будут располагаться на разных этажах, а детали будут в лотках, нагруженных стопками на тележки, перевозить между ними, пользуясь грузовыми лифтами, что займёт, наверное, половину рабочего времени. Лифта ведь ещё дождаться надо. Да детальки по лоткам рассовать, лотки нагрузить, разгрузить… А если две тележки столкнутся, и всё рассыплется, детальки придётся отмывать, и не водой с мылом, а каким-нибудь трихлорэтиленом или четырёххлористым углеродом, да в ультразвуковой ванне… А что делать? Строить новое здание?

Оже-спектрометр Наконец, рязанцы сделали нам Оже-спектрометр и мы с Якоревым за ним поехали. Хитрые изготовители, очевидно, аккуратно посмотрели расстояние по автомобильной дороге от Рязани до Саратова и написали в технических условиях, что прибор разрешается перевозить не далее, чем - и указали на 50 км меньше. Чтобы, если поломается по дороге, починка была за наш счёт, а не за их. Я спросил, нельзя ли перевезти по реке? Никаких ухабов, тряски, резкого торможения… Рязань стоит на Оке, та впадает в Волгу, на которой стоит Саратов… Оказалось, нерационально. Саратов и Рязань относятся к разным пароходствам, примерно, волжскому и окскому. В Горьком пришлось бы перегружать прибор на другой пароход. Т.е. везём на грузовике на пристань в Рязани, сгружаем, загружаем на пароход, плывём в Горький, разгружаем, может, грузим на что-то и перевозим на другой причал, загружаем на другой пароход, везём в Саратов, перегружаем опять на грузовик, сгружаем на заводе. При таком количество погрузочных работ непременно где-то уроним с фатальным эффектом. Лучше уж один раз загрузить в Рязани и один раз разгрузить на заводе в Саратове.

Забегая вперёд, один раз в Саратове не получилось. «Неожиданно» оказалось, что помещение, предназначенное для Оже-спектрометра, заинтересованные в нём (помещении) лица не освободили. И ещё долго не освобождали. Примерно год он стоял в ящиках. Так что пришлось его всё же с земли поднимать на тележку и везти, и потом с тележки, впрочем, это было бы в любом случае, а вот сразу с грузовика на тележку не вышло.

Спектрометр был в больших ящиках (или даже одном очень большом ящике) и одном относительно небольшом, в котором был анализатор. Чтобы его не растрясло, я всю дорогу держал его на коленях. Все колени он мне оттоптал, но что делать? Примерно половину пути ехали вместе с каким-то другим грузовиком, побольше, водитель которого был друг нашего. Когда заночевали, они оба поместились в кабине большого грузовика, там можно было как-то организовать два спальных места. А нам оставили кабину того, что поменьше. Мы поставили ведро перед сиденьем и на него положили спинку сиденья.

Это было моё спальное место, а на сиденье разместился Сергей Николаевич Якорев, сибиряк и мужчина сильно больше меня. Так что мне досталось место поменьше, часть пространства над которым занимал руль. Я долго не мог к нему приноровиться, наконец, засунув в него одну ногу и одну руку, сумел заснуть. Потом второй грузовик ответвился по своему маршруту, а нам вблизи Саратова пришлось заночевать ещё раз. То есть успеть днём приехать мы могли, но уже под вечер, нас бы не пустили на завод, некогда было бы оформить это, охранные чиновники ушли. А ночевать на улице перед воротами завода хуже, чем за городом. В кабине теперь обосновался водитель, а мы на ящике в кузове. Ночью было холодновато, выпал иней. На нас, в том числе. Но, может, мы своими телами не допустили переохлаждения спектрометра :)

Через год нашлось место и спектрометр собрали. Рязанцы специально приезжали для этого. И уехали. А мы нашли здоровенную течь. Как назло, она была в маленьком сильфоне, размещённом ВНУТРИ основной камеры. Кто так строит? Нельзя было снаружи? Через него, собственно, не откачка производилась, а заливка жидкого азота в большую ловушку, установленную внизу основной камеры, чтоб там был хороший вакуум. Не вижу причин размещать его внутри, кроме небольшого укорачивания трубки для азота. Чтобы добраться до фланца, на котором он был привинчен и отвинтить, пришлось отвинчивать сперва верхнюю половину огромной основной камеры.

Стык обеих половин был сделан в виде очень большого фланца с медной прокладкой, сдавленной толстыми шпильками с огромными гайками, причём этими гайками фланец был так тесно усеян, что между ними с трудом можно было вставить гаечный ключ, что причиняло дополнительные неудобства при отвинчивании и при последующем завинчивании. И то и другое производилось методом медленно, на одну гайку, сдвигающегося креста: гайка на одной стороне камеры на несколько оборотов, гайка на другой стороне, гайка на 90° от этих, гайка напротив, потом всё то же самое со сдвигом на одну гайку. Камера была такая большая, а гаек так много, что приходилось их помечать, чтобы не перепутать, а гайку напротив определять, пересчитывая, ведь прямой взгляд на другую сторону фланца блокировал корпус камеры.

Чтобы не получалось несоответствия коэффициентов термического расширения, от чего могла возникнуть течь при обезгаживании (не от слова «гад», а от слова «газ»), гайки и шпильки были сделаны из нержавеющей стали, как и сама камера. Но если для сверхвысоковакуумного оборудования нержавеющая сталь - хороший материал, то для резьбового соединения - довольно плохой. Во-первых, у неё оказалось не очень хорошее скольжение самой по себе, даже несмотря на графитовую смазку. Во-вторых, и прочность у нержавейки оказалась недостаточная для такого применения. Резьба сминалась, и несколько гаек «закусились», их шпильки пришлось распилить - что тоже было очень неудобно там, среди всего оборудования. Ещё бы им не выйти из строя, когда их приходилось крутить, надев на гаечный ключ длинную трубу и наваливаясь на неё вдвоём!

Забегая вперёд, я потом увидел французский Оже-спектрометр (кажется, фирмы «Рибок»… пардон, «Рибер», конечно) и поразился, какие там на фланцах маленькие гаечки и как редко расположены. На небольших фланцах с окошками, например, всего по шесть штук. Я вспомнил, как мы крутили свои огромные гайки, позавидовал и спросил, почему такая разница. Оказалось, на нашем сверхвысоковакуумном оборудовании применяется на фланцах система уплотнения «зуб - канавка». А за рубежом уже применяют систему из двух концентрических кольцевых зубов и канавок. Уплотнение лучше, и потому не требуется такого давления на прокладки. - А почему у нас не применяют, раз известно, что это лучше? - Не хватает точности. Два зуба и две канавки нужно делать точнее, чтобы они правильно попали друг на друга.

В конце концов, основную камеру мы развинтили. Сильфон отвинтили и отправили на починку в Рязань. Получили починенный, всё собрали обратно. Обмотали прибор нагревательными шнурами, закутали в стеклоткань, и трое суток обезгаживали, ночуя поочерёдно в лаборатории. Потому что нужно всё время следить за давлением, если уменьшается, можно прибавить нагрев, если слишком растёт, убавить.

Поиск течи делается с помощью специального прибора, течеискателя. Потому что мало обнаружить сам факт течи. Это-то легко - при течи не удаётся добиться требуемого вакуума. Сверхвысокий вакуум, нужный для Оже-спектрометра, это 10^8-10^10. Гораздо выше, чем, скажем, для электронного микроскопа. Дело в том, что Оже-электроны, с их относительно небольшой энергией, не вылетают с большой глубины образца. Анализируется самый верхний слой, практически несколько атомных слоёв. Это и преимущество - хорошая чувствительность к поверхностным загрязнениям, например, которые можно таким образом хорошо обнаруживать. И недостаток, точнее, сложность в работе, потому что малейшее присутствие остаточных газов, особенно углеродосодержащих, под действием электронного пучка вызывает образование загрязнений на том самом месте, которое анализируешь. Вот поэтому и нужен хороший вакуум. В электронном микроскопе пучок электронов с большой энергией проходит через тонкий образец насквозь, что ему какой-то лишний атомный слой углеродных загрязнений.

Да, так течеискатель. Он действует, по сравнению с наблюдением самой течи, наоборот. Там откачивался воздух и мы смотрели на показания манометра внутри прибора. А тут в прибор закачивается гелий, а течеискатель фиксирует наличие гелия снаружи. У него есть тонкий щуп, трубочка на гибком шланге, этим щупом нужно провести по всем местам соединений, а течеискатель, находясь, в отличие от манометра, снаружи от прибора, подаёт звуковой сигнал, если где гелий вытекает. А вытекает он гораздо лучше, чем остальные газы. Атомы маленькие и химически инертные, ни за что не цепляются. Однако, когда речь о сверхвысоковакуумном приборе, течь может быть такая маленькая, что течеискатель не помогает. Приходится подтягивать гайки на всех фланцах и следить за давлением при откачке. То есть ловить течь методом тыка. Иногда случается и перетянуть шпильки - медная прокладка прорезается и - начинай всё сначала. Правда, при кратковременном впуске атмосферы потом всё же обезгаживание не столь долгое, как после того, как прибор год простоял под атмосферой. Собственно, первоначально он был под вакуумом, но вакуум сам по себе, без постоянной откачки, не поддерживается.

Ещё были всякие неурядицы при работе чувствительного прибора на заводе. Например, как-то за стенкой взвыла дрель, и в спектрометре сам собой включился форвакуумный насос и стал перекачивать воздух из комнаты в неё же...

В общем, долго ли, коротко, спектрометр заработал, и мы стали усердно доказывать начальству, что на него не напрасно потрачена куча денег, что он очень полезен для производства. В основном, определяли причины брака, которыми чаще всего оказывались загрязнения. Какая-то работница на обед покушала селёдку и не помыла руки. Селёдочный жир на микросхеме, микросхема выходит из строя.

Иногда загрязнения были не углеродными, а более интересными. Раз мы нашли палладий на образцах, где его не должно было быть, и он был вреден. Это не такой уж распространённый элемент таблицы Менделеева, откуда он взялся? Оказалось, там рядом с теми образцами делали другие, где палладий как раз был нужен - их палладировали. После этого отмывали от соединения палладия, из которого его осаждали, в воде. Колбу с водой, естественно, мыли. И как-то, перепутав посуду, использовали для отмывки исследуемых образцов. От чего-то другого, не палладия, конечно. Тогда он к ним и прилип.

То есть произошла не совсем тривиальная вещь. Палладий от тех, других, образцов, отмывался, потому что прилипал к ним слабее, чем растворялся в воде. Тем не менее, какая-то небольшая его часть оказалась более склонна прилипнуть на стекло колбы, чем оставаться в растворе, куда она так стремилась только что. Потом колбу мыли, но какая-то часть палладия прицепилась к стеклу так прочно, что не отмылась. Однако - при следующем наполнении водой и тут какая-то небольшая часть прилипчивого палладия оказалась в растворе. И из раствора предпочла переприлипнуть на наши образцы. Если каждый раз количество палладия снижалось порядка на два-три, его получилось в 10^12-10^18 раз меньше. И этого хватило, чтобы Оже-спектрометр его обнаружил!

Велика сила науки на службе электронной промышленности. Правда, у палладия на редкость большой Оже-пик, но всё же и увидели мы его очень надёжно. И я убедился в справедливости утверждения Анаксагора «всё есть во всём». Потому он и сделал свои гомеомерии бесконечно делимыми (в отличие от атомов Демокрита), чтобы в любом веществе оказались следы всех других. Ну ладно. Это всё хорошо, но я подозреваю, что работники цеха просто не сознались в каком-то более крупном нарушении технологии, чем использование той же колбы. Например, они её между использованиями для отмывки разных образцов не мыли. А это уже уменьшение концентрации палладия не в 10^12, а всего лишь в 10^10. Впрочем, и так неплохо.

Не хочу сказать, что только Оже-спектрометр помогал расследовать причины брака. Например, был такой случай. На тестировании после центрифуги часть изготовленных микросхем не проявили вообще никакой жизни. Как будто их в корпусе вообще нет. Ну, бывает, какая-то ножка оторвётся, для того их и испытывают центрифугой, чтобы определить плохо приваренные контакты. Но чтобы все? Вскрывали в таких случаях (их было несколько) корпуса - и впрямь, пусто. Вместо микросхемы какой-то порошок… Этот брак без нас выловили. Дело было в том, что микросхемы перед привариванием ножек приклеивают к корпусу клеем.

Для ускорения работы пузырёк с клеем не закрывали, но он на воздухе загустевает из-за испарения растворителя. Его время от времени нужно подливать. Ну вот, работница подливала его, подливала, и не заметила, как стала клеить практически чистым растворителем. Которого, тем не менее, хватало, чтобы приклеить и даже не отклеиться при приваривании ножек контактной сваркой и загерметизировать корпус. Но там, уже внутри, микросхема всё же отклеивалась и свободно перемещалась внутри корпуса, держась только на ножках. Для тестирования перед центрифугой этого хватало, а на центрифуге её разносило в пыль…

В это же ОКБ поступил через четыре года работать мой брат Витя. Вообще-то он собирался в теоретический отдел другого института (единственный в Саратове), оттуда приезжали люди в универ и приглашали. Но на распределении оказалось, что нельзя так определённо выбрать место, даже нельзя в тот институт, а только в объединение института и завода на 8-й Дачной. И, конечно, попав в объединение, он обнаружил, что его отправляют мастером на тот завод.

- Да что тебе не нравится? - удивлялись начальники. - Там спирта море разливанное, люди спиваются мгновенно, ты там через два года станешь начальником цеха. - Им не приходило в голову, что человек, стремившийся заниматься теорией полупроводниковой схемотехники, вовсе не хочет быть даже начальником цеха, и море разливанное спирта его тоже не привлекает. Он, кстати, ещё больший нелюбитель алкоголя, чем я. Оказалось, что задействовав всех знакомых среди начальства, нельзя изменить это распределение так, чтобы попасть в теоретический отдел. Оказалось возможным только изменить его более кардинально и перераспределиться в ОКБ завода ПУЛ…

Так вот, там Витя занимался именно микросхемами. И начальников характеризовал так. Они бывают типа «Акопян» и типа «Кулибин». Первый тип демонстрирует заказчику партию исправных микросхем, и потом с помощью ловкости рук подменяет её на партию бракованных, которые и вручает заказчику, с тем, чтобы теперь продемонстрировать исправные второй раз и отдать тоже. Начальник второго типа ухитрился понять, что именно Витя сделал с испытательным стендом, чтобы более тонко различать брак и выделить из него некую часть микросхем, ранее считавшихся браком, но на самом деле годных. Более того, он сумел объяснить рабочему, работавшему на стенде, что и как перенастроить, чтобы стенд выдавал ещё больший процент годных. Правда, теперь уже принимая за годные часть брака.

А отвечать за это пришлось бы Вите, как человеку, придумавшему эту перенастройку стенда. В общем, в нравственном отношении научная работа - это одно, а производство - совсем другое. В конце концов он оттуда ушёл работать учителем физики и математики в школе. Правда, приходилось переходить из школы в школу, потому что его всё время брали на место учительницы, находящейся в декретном отпуске, а как только она рожала и немного выкармливала младенца, то возвращалась. Но, в конце концов, он нашёл школу, в которой работает уже много лет. Однако только после переезда в Москву.

Так это почему-то называлось: «поехать в колхоз», «послали в колхоз» и т.д. На самом деле в подавляющем большинстве случаев это был совхоз. (Как-то я имел возможность сравнить, и могу сказать, что они очень отличаются). Теперь думаю, может, в этом неправильном обозначении была некая фига в кармане: нам, социалистическим рабам, пофиг - колхоз, там, совхоз, ферма, агрокомплекс… Интерес - он ведь сопутствует хоть какому-то энтузиазму, а откуда бы ему взяться, энтузиазму?

Автор в 1973-1978 гг. учился на физическом факультете Саратовского государственного университета. Сразу же после окончания прошел курсы по установкам электронной и ионной спектроскопии в Научно-исследовательском технологическом институте в Рязани, а в 1981-м курсы сельских трактористов (гусеничный трактор ДТ-75, колесный МТЗ-50) на Саратовском заводе приёмно-усилительных ламп (ПУЛ), и даже курсы в университете марксизма-ленинизма (1983). Инженер-физик, кандидат физико-математических наук.

70-е, жизненные практики СССР, мемуары; СССР, инженеры; СССР, 80-е

Previous post Next post
Up