кое-что про машущий полёт

Mar 04, 2009 16:27


Бесспорный факт: распростёртые и зафиксированные птичьи крылья создают подъёмную силу при достаточной скорости обтекания. Заметим, что эта подъёмная сила мало зависит от того, зафиксированы ли распростёртые крылья в своём среднем положении, или в любом другом положении - в пределах полной амплитуды маха при оптимальном силовом режиме прямолинейного горизонтального полёта. Значит, машущие движения здесь требуются не для создания подъёмной силы, а исключительно для создания тяги. С этим выводом согласуется и такое наблюдение: для увеличения скорости горизонтального машущего полёта, птица увеличивает частоту машущих движений.

Как же можно "отталкиваться от воздуха" с помощью этих движении? Казалось бы, отброс воздуха назад при машущих движениях крыльев вверх-вниз легко достижим при соответствующих углах атаки. В самом деле, при махе вверх крыльями с положительным углом атаки, воздух бы отбрасывался назад, и возникала бы реактивная сила, которая толкала бы птицу вперёд. Но, при махе вниз теми же самыми крыльями, аналогичная реактивная сила толкала бы птицу уже не вперёд, а назад. Тут бы сделать отрицательный угол атаки но тогда стала бы отрицательной подъёмная сила! Как можно видеть, при варьировании угла атаки машущих крыльев с целью создания тяги, практически невозможно добиться ровного и устойчивого горизонтального полёта. Благодаря создателям телесериалов о живой природе, имеется возможность наблюдать подробности машущих движений крыльев у разных птиц, совершающих прямолинейный горизонтальный полёт в оптимальном силовом режиме. Так вот, действительно: на протяжении машущего цикла никаких изменений угла атаки не просматривается. Кстати, биологи подтвердят, что у птиц попросту нет мышц, которые могли бы выворачивать крылья для изменения угла атаки: грудная мышца производит мах вниз, а подключичная плюс помогающая ей большая дельтовидная - мах вверх. Птица может активно выворачивать лишь оконечности крыльев - причём, в ограниченных пределах; и требуется это для руления (у самолётов аналогично работают элероны). А, чтобы изменить угол атаки, например, увеличить его для торможения в воздухе, птицам приходится изменять положение всего корпуса, "задирая нос". Впрочем, имеет место и небольшое пассивное изменение эффективного угла атаки благодаря гибкости маховых перьев. В этой-то гибкости маховых перьев и заключается, на наш взгляд, секрет создания тяги машущими движениями крыльев.

Вот этот секрет. Стержень махового пера утончается в направлении к кончику, и на кончике практически сходит на нет. Поэтому, чем ближе к кончику, тем больше гибкость махового пера. Это свойство приводит вот к чему: из-за сопротивления воздуха маховым движениям, кончики маховых перьев изгибаются в сторону, противоположную направлению маха. То есть, задние части крыльев, составленные из кончиков маховых перьев, работают как гибкие закрылки которые, при махе крыльями вниз, пассивно отгибаются вверх, и наоборот. При этом, как можно видеть, именно гибкими закрылками машущие крылья "отмахивают" воздух назад. На наш взгляд, это и порождает реактивную силу, толкающую птицу вперёд. Каков курьёз: крылья птиц отмахивают воздух по хорошо известному принципу гибкого дамского веера, зачастую сделанного из... длинных птичьих перьев!

-- отсюда. Но вообще, чтобы разобраться, стоит читать весь сайт Устюгиных.

Это вполне согласуется с моим эээ... "видением" о создании волны в газовом потоке.
Разумеется, для человека это вовсе не просто.

Кстати, дети инстинктивно чувствуют эту идею. Предложите (достаточно маленькому) ребёнку показать, как машет крыльями большая птица. Он не будет загребать воздух, он будет именно стараться пускать по рукам волну - необязательно понимая, как эта волна помогает птице лететь.

ресурс, kiting, наука, кстати о птичках

Previous post Next post
Up