«Западня Ферма»

Jan 04, 2009 03:27

Третьего дня посмотрел кино «Западня Ферма» (La Habitacion de Fermat, 2007). Вкратце синопсис - некто, называющий себя Ферма, собирает на встрече в заброшенном доме четырех математиков, дает им имена великих ученых прошлого (Блеза Паскаля, Эваристы Галуа, Давида Гилберта, и какой-то Оливы Сабуки, про которую я вообще ни разу в жизни не слышал=)) и собирается открыть им «решение величайшей из поставленных математических задач». Но в итоге они оказываются запертыми в одной комнате, которая постепенно начинает уменьшаться в размерах. Чтобы остановить сжатие комнаты, они вынуждены решать разные математические задачи за определенное короткое время. Параллельно с решением они пытаются понять, как они дошли до жизни такой, и кто же во всем этом виноват, пока комната окончательно не сжалась и не убила их.

После себя фильм оставляет достаточно приятное впечатление. Несколько удачных шуток, операторских планов, умело нагоняемый саспенс, в общем, все как надо. Я бы хотел поподробнее рассказать о задачках, которые неудачливые математики решают по ходу фильма. Уровень их, конечно, примерно с третьего по седьмой класс, исключительно на сообразительность, а не на высшую математику. Но все использованные задачи давно уже стали классикой жанра, и раз про них даже сняли фильм, стоит обсудить их и здесь=)

Задача №1. Кондитер получил три непрозрачных банки. В одной хранятся мятные конфеты, во второй - анисовые, а в третьей - смесь мятных и анисовых конфет. На банках наклеены этикетки, с надписями «мятные», «анисовые» и «смесь мятных и анисовых», но кондитера предупредили, что все они наклеены неправильно. Какое минимальное количество конфет должен достать кондитер, чтобы узнать содержимое банок?

Ответ (нужно выделить мышкой): Конечно же, достаточно одной конфеты, которую надо достать из банки с этикеткой «смесь». Так как все этикетки перепутаны, то там не может быть смеси, и если достанется мятная конфета - там мятные конфеты. А тогда там, где наклейка «смесь» - анисовые, и где наклейка «анисовые» - смесь. Соответственно, все наоборот, если из банки «смесь» вытащится анисовая.

Задача №2. Расшифровать следующую последовательность цифр
00000000000000011111111100
01111111111100111111111110
01100010001100110001000110
01111101111100111100011110
00111111111000001010101000
00011010110000001111111000
0000000000000

Ответ: Череп. Надо заметить, что здесь 169 цифр, которые соответствуют разбиению квадрата со стороной 13 на единичные клетки, причем нули - это незакрашенные клетки, а единицы - закрашенные. Практически, японский кроссворд=) В результате получается рисунок, на котором и можно разглядеть череп.

Задача №3. В герметичной запертой комнате висит лампочка. Снаружи комнаты три выключателя. Только один из них включает лампочку. Разрешается единственный раз зайти в комнату. Как определить, какой выключатель включает лампочку?

Ответ: Эту задачку я знаю с какой-то из старых физфаковских олимпиад, правда, заочных. Разгадка такова - надо включить один выключатель, подождать немного, выключить его, включить второй и зайти в комнату. Если лампочка горит, то ее включает второй, если не горит, но слегка теплая - ее включает первый, а если не горит и холодная - то третий. Единственное, что смущает - почему-то априори считается, что лампочка нагревается во время работы. Это не столь очевидно=)

Задача №4. Как отсчитать 9 минут с помощью двух песочных часов - одних на 4 минуты, вторых на 7 минут?

Ответ: Запускаем одновременно двое этих часов. Когда четырехминутные закончатся, переворачиваем их. Когда закончатся семиминутные, и их переворачиваем. Когда четырехминутные закончатся во второй раз, прошло 8 минут, а в семиминутных - одна минута. Переворачиваем семиминутные и получаем как раз 9 минут, что и требовалось.

Задача №5. Ученик спросил учителя: «Сколько лет вашим дочерям?». Учитель ответил: «Если ты перемножишь их возраста, то получишь 36, а если сложишь, то получишь номер твоего дома». «Мне нужно больше информации!» - воскликнул ученик. На что учитель ответил: «Ах да, старшая играет на фортепиано». Сколько лет дочерям?

Ответ: (9, 2, 2). Надо разложить число 36 на множители. Варианты могут быть такие: (6, 6), (9, 4, 1), (9, 2, 2), (6, 6, 1), (6, 3, 2). Поскольку этих данных не хватает («больше информации!»), значит ученик вынужден выбирать из разложений с одинаковой суммой. Таковыми являются только (9, 2, 2) и (6, 6, 1). Следующая подсказка - наличие старшей дочери - убивает вариант (6, 6, 1). Хотя, если вдуматься, даже среди двух близнецов всегда есть старшая=). Тем самым остается правильный ответ, (9, 2, 2).

Задача №6. В стране лжи все только лгут, в стране правды говорят только правду. Путник оказался в запертой комнате с двумя дверьми, одна дверь ведет к свободе, другая нет. Двери охраняют стражники. Один из страны лжи, другой из страны правды. Чтобы найти выход на свободу, путник может задать лишь один вопрос лишь одному из стражников, но неизвестно, кто из стражников из какой страны. Какой вопрос он должен задать, чтобы выйти на свободу?

Ответ: Привет, Рэймонд Смаллиан=) Надо спросить, какую дверь другой стражник назовет правильной, и идти в противоположную. Потому что если тот, к кому обращен вопрос, лжет, то другой говорит правду и назовет верную дверь, но лжец должен указать неправильную дверь. Аналогично, если адресат вопроса говорит правду, то он честно покажет на неправильную дверь, про которую второй, лжец, скажет, что она ведет к свободе.

Задача №7. Мать на 21 год старше сына, а через шесть лет сын станет младше матери в пять раз. Чем занимается отец?

Ответ: Впервые об этой гомерически смешной (на мой вкус) задаче я услышал в Буквоеде от Аси Шавинской. Из системы двух уравнений с двумя неизвестными (возраст матери и возраст отца) получается, что возраст сына равен -3/4 года, то есть -9 месяцев. Чем занимается отец, наверное, теперь очевидно. Скажем так, делает сына=))

Кино, Математика, Министерство Образования

Previous post Next post
Up