Доступ к безграничной энергии - едва ли не самая востребованная идея человечества. Недаром новые разработки, которые навсегда избавили бы население Земли от нехватки энергии, то и дело появляются в научных корпоративных и университетских лабораториях.
Генератор из турникетов, пьезоэлементы в напольной плитке, выработка электроэнергии при помощи «лежачих полицейских», использование вулканической энергии или сточных вод - каких только методов электрогенерации не предложили исследователи за последнее десятилетие. В 2020 году этот список пополнили новые изобретения, позволяющие получать электричество из необычных источников. И хотя сроки масштабной реализации этих проектов отодвигаются на годы или даже десятилетия, это не останавливает изобретателей, вновь и вновь пытающихся получить хотя бы первые микроватты энергии из альтернативных источников.
Электричество из воздуха
В лаборатории Университета Массачусетса в Амхерсте (UMass Amherst) создан Air-gen - пневматический генератор с электропроводящими белковыми нанопроволоками, которые производят микробы Geobacter.
Тонкая пленка из нанопроволок толщиной менее 10 мкм нижним и верхним концами касается миниатюрных электродов. Она адсорбирует водяной пар из воздуха, создавая на устройстве градиент напряжения. Комбинация электропроводности и химического состава поверхности белковых нанопроволок в сочетании с порами между ними в пленке создает условия для генерации электрического тока. По мнению исследователей, с помощью Air-gen можно генерировать электроэнергию даже в условиях низкой влажности, сравнимых с пустыней Сахарой.
В лабораторном прототипе генератора удалось получить постоянное напряжение около 0,5 В на пленке толщиной 7 мкм с плотностью тока 17 мкА на квадратный сантиметр. Этого достаточно, чтобы обеспечить работу малогабаритной электроники. Но если запустить в производство так называемый патч Air-gen, то он сможет заменить аккумуляторы в браслетах для фитнеса, умных часах и мобильных телефонах.
Падающие с высоты капли - это не просто дождь, а возобновляемый источник электроэнергии
В Городском университете Гонконга (City university of Hong Kong) разработан электрогенератор на основе падающих капель воды с полевой транзисторной структурой (ПТС). Устройство обеспечивает очень высокую эффективность преобразования энергии и удельную мощность до 50,1 Вт/кв. м, что на несколько порядков выше, чем у аналогичных трибогенераторов.
Исследователи применили для сбора энергии от ударов падающих капель устройство, состоящее из верхней политетрафторэтиленовой пленки на подложке из оксида индия и олова, и алюминиевого электрода. Падая на верхний слой и растекаясь, капли соединяют алюминиевый электрод и электрод из оксида индия и олова. Тем самым компоненты создают электрическую систему с замкнутым контуром, преобразуя обычный межфазный эффект в объемный эффект и увеличивая мгновенную плотность мощности.
В лабораторном генераторе капля воды объемом 100 микролитров (0,1 г), падающая с высоты 15 см, генерирует напряжение более 140 В, зажигая 100 светодиодных лампочек. Кинетическая энергия падающей воды обусловлена гравитацией и может рассматриваться как возобновляемая. По мнению исследователей, этот метод получения электроэнергии применим везде, где вода попадает на твердую поверхность - от корпуса судна до зонтика.
«Из света в тень перелетая»
Солнечные электростанции используют энергию солнечного света, и любое изменение оптимального угла падения лучей, а уж тем более тень снижают эффективность фотопанелей. Однако ученые из Национального университета Сингапура (National university of Singapore, NUS) создали SEG-генератор (Shadow-effect energy generator), использующий эффект солнечной тени. Электрический ток в генераторе возникает благодаря разности потенциалов между участками с контрастным освещением. SEG-генератор работает наиболее эффективно тогда, когда половина его поверхности освещена ярким солнцем, а другая находится в тени. Генерирующая поверхность состоит из ячеек, в которых на кремниевую подложку нанесена сверхтонкая пленка золота.
В помещении удельная плотность электромощности устройства составляет 0,14 мкВт на квадратный сантиметр, а полученной под воздействием тени энергии (1,2 В) достаточно для управления электронными часами.
Кроме того, SEG может служить датчиком движения с автономным питанием, отслеживая перемещение теней, и использоваться в интеллектуальных сенсорных системах. Благодаря рентабельности, простоте и стабильности, SEG имеет широкие перспективы применения - от выработки «зеленой» энергии до силовой электроники, уверяют исследователи.
Источники электроэнергии вокруг нас
Электричество, которое присутствует в домах, офисах, рабочих помещениях и автомобилях, создает низкоуровневые магнитные поля. В Пенсильванском университете (University of Pennsylvania) разработан способ для сбора этих случайных магнитных полей и преобразования их энергии в электричество.
Ученые использовали композитную структуру, сложив вместе два разных материала. Один из них является магнитострикционным и преобразует магнитное поле в напряжение, а другой - пьезоэлектрическим и преобразует напряжение или колебания в электрическое поле.
Чтобы получить электроэнергию, тонкие, как бумага, генераторы длиной около 1,5 дюйма (3,8 см) размещаются на приборах, источниках света и в других местах наибольшего магнитного поля. На расстоянии 4 дюймов (более 10 см) от обогревателя такое устройство производило достаточно электроэнергии для питания 180 светодиодных матриц, а на расстоянии 8 дюймов (почти 20,5 см) - для питания цифрового будильника.
По мнению разработчиков, эта технология имеет значение при проектировании интеллектуальных зданий, в которых применяются автономные беспроводные сенсорные сети для дистанционного мониторинга и управления.
Бактерии для биохимической генерации энергии
Получением электроэнергии с помощью различных микроорганизмов занимаются многие изобретатели во всем мире. Исследователи из Санкт-Петербургского государственного электротехнического университета «ЛЭТИ» создали макет биотопливной установки для получения электричества с помощью штаммов сине-зеленых водорослей Anabaena и Synechococcus, которые обладают бактериальной структурой клеток. Эти водоросли способны использовать солнечный свет для получения энергии, воду в качестве донора электронов, а углекислый газ из воздуха для получения углеродсодержащих соединений.
Лабораторная модель биотопливного элемента на основе водорослей позволила сгенерировать электроэнергию под действием солнечного света. Чтобы увеличить эффективность установки, петербургские ученые оптимизировали параметры наноструктурированных анодов из различных углеродных материалов, на которые осаждались микроорганизмы. Ячейка с бактерией Synechococcus на гибридном углеродном аноде показала наибольшую эффективность - 183 мВт/кв. м.
Электростанция галактического масштаба
Черные дыры обладают колоссальной энергией, и за последние полвека ученые предложили немало вариантов, как воспользоваться этим источником или его искусственным аналогом. На этот раз физики Лука Комиссо (Luca Comisso) из Колумбийского университета (Нью-Йорк, США) и Фелипе Асенжо (Felipe A. Asenjo) из Университета Адольфо Ибаньеса (Саньтьяго, Чили) предложили новый способ получения энергии из черных дыр путем размыкания и повторного соединения линий магнитного поля вблизи горизонта событий.
Эта область пространства обычно заполнена плазмой из остатков вещества, еще не поглощенного черной дырой. Формируя «косички» из линий магнитного поля, можно заставить заряженные частицы ускоряться до околосветовых скоростей либо в направлении вращения черной дыры, либо против.
Частицы плазмы, которые двигаются против вращения, будут иметь противоположный спин, получат отрицательную энергию и исчезнут в гравитационной яме. А двигающиеся в направлении вращения частицы ускорятся и смогут избежать хватки черной дыры, а также унести часть ее энергии. По подсчетам исследователей, если когда-нибудь можно будет реализовать такой процесс, то его производительность достигнет не менее 150 %.